秋七年级数学上册 第五章 一元一次方程 5.6 应用一元一次方程——追赶小明教案(新版)北师大版-(新版)北师大版初中七年级上册数学教案.doc
《秋七年级数学上册 第五章 一元一次方程 5.6 应用一元一次方程——追赶小明教案(新版)北师大版-(新版)北师大版初中七年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《秋七年级数学上册 第五章 一元一次方程 5.6 应用一元一次方程——追赶小明教案(新版)北师大版-(新版)北师大版初中七年级上册数学教案.doc(10页珍藏版)》请在咨信网上搜索。
5.6 应用一元一次方程——追赶小明 教学目标: 1.能利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用. 2.通过观察、抽象、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力. 3.通过师生间、学生间的探索与交流以及情境的创设,激发学生的学习热情和求知欲望.从而进一步提高学习数学、应用数学解决实际问题的意识,养成良好的学习习惯. 教学重点与难点: 重点:分析题意,寻找等量关系,列方程解决行程问题. 难点:利用线段图分析行程问题,寻找等量关系,建立数学模型. 教法与学法指导: 本节课主要是通过学生亲身的生活体验来展开,再加以延伸,从中抽象出数学问题,再通过建立模型解决实际问题.通过练习来巩固所学知识.消除了学生对新课、新知识的抵触情绪和畏惧心理,各个环节的过渡都非常自然.让学生在不知不觉中学完本节课.同时也体现出了从生活发现数学,让数学回归生活的设计理念. 课前准备: 制作课件,检查学生预习稿的完成情况,收集学生预习中遇到的问题信息. 教学过程: 一、创设情境,导入新课 师:我们来看两张图片.(教师出示课件) 生(热情洋溢地):是博尔特百米比赛,我们学校刚刚举行的运动会. 师:看来同学们对这两张图片很熟悉,你知道其中蕴含着什么数学问题吗? 生:路程、速度、时间. 师:这三个量之间有怎样的关系呢? 生:路程=速度时间;速度=;时间=. 师:(展示课件) 师:很好!那就用你的知识完成下面的问题吧. 1.若小亮每秒跑4米,那么他10秒能跑多少____米.(路程=速度时间) 2.小亮用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=) 3.已知小亮家距离学校1000米,他以5米/秒的速度骑车到达学校需要_____分钟. (时间=) 师:好,看来同学们对这三个量的关系掌握的很好,请想一想生活中的行程问题都有那些? 生:相遇问题、追及问题. (学生之间互相补充并说明特点) 师:这节课我们就来共同研究有关相遇、追及等方面的问题. 【教师板书课题:5.6 应用一元一次方程—追赶小明】 【设计意图】通过图片的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,激发学生的好奇心,引起每位同学的兴趣,唤醒学生的思维和问题意识,进而轻松地引入本节所要探讨的主要问题. 二、合作探究,获取新知 师:(多媒体展示例题) 例1 小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他. (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远? (学生读题) 师:同学们,你是否遇到过类似小明的经历呢. 生(很兴奋,七嘴八舌):有的说有,有的说没有. 师:家人要追上你与什么因素有关呢? 生:绝大数学生都可能会说与速度有关,少数学生可能会说与距离有关等等. (学生仔细审题,理清题目中的数量关系,提高阅读能力.根据自己的理解口述题目中的内容.) 师:在这个问题里已知条件是什么?求的是什么? 生:小明家到学校距离1000m,小明的速度是80米/分,爸爸的速度是80米/分,小明提前5分钟出发.求的是爸爸追上小明的时间. 师:这个问题中涉及了哪个数量关系? 生:路程、速度、时间. 师:你能将他们的行走过程用图形表示出来吗? (学生先自己画图但不够完整,教师适当点拨补充完善.) 小明先走的路程 小明又走的路程 追及点 家 学校 爸爸追赶的路程 师:结合图形,你找到有几个等量关系? 生:①小明走的路程=爸爸走的路程;②小明所用时间=5+爸爸所用时间. (对于第一个关系学生很容易得出,第二个关系需要教师提示.) 师:你将用哪一个等量关系建立方程? 生:小明走的路程=爸爸走的路程. 师:如果设爸爸追上小明用了x分钟,你能将数量关系用线段图表示出来吗? 生: 805 80x 180x 师:于是我们可以得到怎样的关系式. 生:80×5+80x=180x. 师:好!根据我们的分析,你能将这题的步骤整理出来吗?(师生一起规范整理步骤) 生:解:设爸爸追上小明用了x分钟, 根据题意,得 80×5+80x=180x. 解得x=4. 答:爸爸追上小明用了4分钟. 师:你能独立完成问题(2)吗? 生:(在前面的基础上学生比较容易得出结果.) 180×4=720(米),1000-720=280(米). 答:追上小明时,距离学校还有280米. (师生小结:追及问题若甲先走,乙后走则等量关系有:甲的路程=乙的路程;甲的时间=乙的时间+时间差.) 【设计意图】从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识. 三、变式训练,巩固提高 变式训练(一): 师:(多媒体展示问题) 在前面的问题中如果小明的爸爸要赶时间上班,他必须在5分钟之内追上小明,那么爸爸的速度至少应是多少? 生:表现出浓厚的兴趣,互相讨论.一部分同学借助上题的经验与方法,开始思考本道题的解题思路. 师:这个问题与上面的问题有什么不同? 生:本题限制了时间,所要解决的问题是爸爸的速度. 师:(根据学生的讨论情况,进行适当的提示). 1.如爸爸5分钟追上小明,这时小明共走了几分钟? 2.追上小明时,小明走过的路程是多少? 3.爸爸走的路程与小明所走的路程有什么关系? 4.那么,爸爸的速度呢? 生:在练习本上画出线段图,并完成书写步骤. (学生类比上题画出本题的线段图,互相交流改进补充完整.) 小明前5分钟走的路程 小明后5分钟走的路程 家 学校 爸爸5分钟走的路程 追及点 生:解:设爸爸的速度为x米/分, 根据题意,得 5x=80×10. 解这个方程,得 x=160. 答:爸爸的速度至少应是160米/分. 【设计意图】通过问题情境的转换,让学生在探索和教师的引导中进一步掌握用画线段图解决行程问题中的追赶问题,启发学生的思维,锻炼学生的解决问题能力. 变式训练(二): 师:(多媒体展示问题) 在前面的问题中若当小明到校后才发现忘带语文课本,赶紧打电话给爸爸,爸爸立即以180米/分的速度从家出发,同时小明从学校以100米/分的速度从学校返回,两人几分钟后相遇? 生:(阅读题目,理清题目中的逻辑关系) 师:这个问题与上面的问题有什么区别? 生:从两个地点相向而行. 师:你能正确画出线段图并完成书写步骤吗?(教师进行点拨,规范.) 生:(在练习本上画出线段图,并完成书写步骤.) 180x 100x 1000 生:解:设经过x分钟相遇, 根据题意,得 180x+100x=1000. 解得 x=. 答:经过分钟相遇. (师生小结:相向而行,等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程.) 【设计意图】分析相遇问题,由于已有对上一个问题的理解故而学生能比较正确地画出线段图,并得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程. 四、学以致用,解决问题 师:(多媒体展示问题) 育红学校七年级学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时. 生:(积极的合作探究,根据上面的事实分组提出问题、讨论、交流,并尝试解答.) 师:(在学生仔细读题后提问)这个问题与我们的例题有什么异同? 生:(小组讨论,分析比较后得出)相同之处是有两个“人”一前一后,且后面的速度比前面的快,不同的是这个问题中有个联络员. 师:提示学生从速度、时间、路程三个角度进行挖掘. 生:通过小组讨论、交流比较容易得出: 问题1:后队追上前队用了多长时间? 解:设后队追上前队用了x小时, 根据题意,得 6x = 4x + 4×1. 解这个方程,得 x =2. 答:后队追上前队时用了2小时. 问题2:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时. 由题意,得 12x = 4x + 4. 解这个方程,得 x =0.5. 答:联络员第一次追上前队时用了0.5小时. 问题3:后队追上前队时联络员行了多少路程? 问题4:当后队追上前队时,他们已经行进了多少路程? 问题5:联络员在前队出发多少时间后第一次追上前队? 对于问题3、4、5学生不容易得出,教师适当引导提出问题,并鼓励学生课下利用方程解决问题. 【设计意图】这是一个开放性的问题,答案不唯一,旨在拓展学生思维,寻求个性发展.教师应鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间;后队追上前队时联络员行了多少路程;通讯员第一次追上前队时,用了多少时间;当后队追上前队时,他们已经行进了多少路程; 联系员在前队出发多少时间后,第一次追上前队等,教师还应鼓励学生尝试利用方程去解决这些问题,并与同伴交流自己的问题和解决问题的过程. 五、巩固训练,提升能力 1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵. 2.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求 乙骑自行车的速度. 3.七年级一班列队以每小时6千米的速度去甲地.王明从 队尾以每小时10千米的速度赶到队伍的排头后又以同 样的速度返回排尾,一共用了7.5分钟,求队伍的长. 4.甲、乙两人相距280米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇? 【设计意图】进一步强化本节的内容,通过题目的练习让学生真正理解和掌握用画线段图来解决行程问题中的相遇和追赶问题. 六、课堂小结,反思归纳 师:今天你们学到了什么知识?是怎样学到的?还有什么疑问? (让学生自己总结,可以加深印象,提高学生学习的积极性.师适时点拨.) 生1:借助“线段图”能帮助我们分析复杂问题中的数量关系,从而建立方程解决实际问题. 生2:相遇问题:甲走的路程+乙走的路程=总路程. 生3:追及问题:前者走的路程+两者间的距离=追者走的路程. 生4:路程=速度×时间; 时间=路程÷速度;速度=路程÷时间. 【设计意图】强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略. 七、达标检测,反馈矫正 多媒体出示: 1.A,B两地相距480千米,一列慢车从A地开出,每小时行60千米,一列快车从B地开出,每小时行65千米,若两车同时开出,相向而行,x小时相遇,则由条件列出的方程为 . 2.甲乙两站相距450千米,一列慢车从甲站开出速度是52千米/时,一列快车从乙站开出速度是70千米/时,慢车开出0.5小时后快车开出,两车相向而行,问快车经过几小时与慢车相遇?设快车经过x小时与慢车相遇则可列方程( ) A、52x+70x=450 B、70x=52x+52×0.5 C、70x=52x+450 D、52×0.5+52x+70x=450 3.一架飞机飞行于两城市之间,顺风 需要5小时30分,逆风需要6小时,已知风速每小时24千米,则顺风中飞机的速度为多少?逆风中飞机的速度为多少? 【设计意图】通过达标检测及时反馈学生对本节课的知识点的掌握程度,以便有的放矢进行后续教学. 七、布置作业,拓展延伸 必做题: 一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进.突然,1号队员一45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间? 选做题: 给定方程2.5x+2.5(x+2)=55,你能联系生活实际编写一道数学问题吗?与同学探讨,并负责讲解. 【设计意图】作业分层体现分层教学思想,让不同学生得到不同程度的发展. 5.6 应用一元一次方程—追赶小明 一、公式: 路程=速度×时间 速度=路程÷时间 时间=路程÷速度 二、探究1 追及问题 例1 三、探究2 相遇问题 四、探究3 开放题 板书设计: 教学反思:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秋七年级数学上册 第五章 一元一次方程 5.6 应用一元一次方程追赶小明教案新版北师大版-新版北师大版初中七年级上册数学教案 七年 级数 上册 第五 应用 追赶 明教 新版 北师大 初中 年级
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:秋七年级数学上册 第五章 一元一次方程 5.6 应用一元一次方程——追赶小明教案(新版)北师大版-(新版)北师大版初中七年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7609899.html
链接地址:https://www.zixin.com.cn/doc/7609899.html