高中数学——空间向量与立体几何练习题(附答案).doc
《高中数学——空间向量与立体几何练习题(附答案).doc》由会员分享,可在线阅读,更多相关《高中数学——空间向量与立体几何练习题(附答案).doc(6页珍藏版)》请在咨信网上搜索。
空间向量练习题 1. 如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB; (Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 如图所示,以A为原点,建立空间直角坐标系.则相关各点的 坐标分别是A(0,0,0),B(1,0,0), P(0,0,2), (Ⅰ)证明 因为, 平面PAB的一个法向量是, 所以共线.从而BE⊥平面PAB. 又因为平面PBE, 故平面PBE⊥平面PAB. (Ⅱ)解 易知 设是平面PBE的一个法向量,则由得 所以 设是平面PAD的一个法向量,则由得所以故可取 于是, 故平面PAD和平面PBE所成二面角(锐角)的大小是 2. 如图,正三棱柱ABC-A1B1C1的所有 棱长都为2,D为CC1中点。 (Ⅰ)求证:AB1⊥面A1BD; (Ⅱ)求二面角A-A1D-B的大小; (Ⅲ)求点C到平面A1BD的距离; (Ⅰ)证明 取中点,连结. 为正三角形,. 在正三棱柱中,平面平面, 平面. 取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,, ,,. ,, x z A B C D O F y ,. 平面. (Ⅱ)解 设平面的法向量为. ,. ,, 令得为平面的一个法向量. 由(Ⅰ)知平面, 为平面的法向量. ,. 二面角的大小为. (Ⅲ)解 由(Ⅱ),为平面法向量, . 点到平面的距离. A C D O B E y z x 3.如图,在四面体ABCD中,O、E分别是BD、BC的中点, (1)求证:平面BCD; (2)求异面直线AB与CD所成角的余弦值; (3)求点E到平面ACD的距离. ⑴ 证明 连结OC ,. 在中,由已知可得 而, A C D O B E y z x 即 ∴平面. (2)解 以O为原点,如图建立空间直角坐标系, 则 , ∴ 异面直线AB与CD所成角的余弦值为. ⑶解 设平面ACD的法向量为则 , ∴,令得是平面ACD的一个法向量. 又 ∴点E到平面ACD的距离 . 4.已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小. 证明: 设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).……4分 (Ⅰ), 因为, 所以CM⊥SN ……6分 (Ⅱ), 设a=(x,y,z)为平面CMN的一个法向量, 则 ……9分 因为 所以SN与片面CMN所成角为45°。 ……12分 5. 如图,在三棱柱中,已知学,,,,,网,侧面, (1)求直线C1B与底面ABC所成角正切值; (2)在棱(不包含端点上确定一点的位置, 使得(要求说明理由). (3)在(2)的条件下,若,求二面角的大小. 解:(1)在直三棱柱中, 在平面上的射影为. 为直线与底面所成角. ………… , 即直线与底面所成角正切值为2. ………… (2)当E为中点时,. ,即 ………… 又, ,, ………… (3)取的中点,的中点,则∥,且, 连结,设,连结, 则∥,且 为二面角的平面角. ………… , ∴二面角的大小为45° …………- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 空间 向量 立体几何 练习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文