中考数学复习-第四章4.2基本图形-三角形与全等三角形课件.ppt
《中考数学复习-第四章4.2基本图形-三角形与全等三角形课件.ppt》由会员分享,可在线阅读,更多相关《中考数学复习-第四章4.2基本图形-三角形与全等三角形课件.ppt(33页珍藏版)》请在咨信网上搜索。
第21课三角形与全等三角形 基础知识 自主学习1三角形边、角关系:三角形的任何两边之和 第三边;三角形的内角和等 于 .2三角形的分类:按角可分为 和 ,按边可分 为 和 要点梳理要点梳理大于大于180直角三角形直角三角形斜三角形斜三角形不等边三角形不等边三角形等边三角形等边三角形3三角形中的主要线段:(1)角平分线:一个角的顶点和这个角的平分线与对边的 交点之间的线段叫做三角形的角平分线;三角形三条 角平分线的交点,则叫三角形的内心,它到各边的距 离相等 (2)中线:连结三角形的一个顶点和它对边中点的线段叫 做三角形的中线;三角形三条中线的交点,叫三角形 的重心 (3)高:三角形的一个顶点和它对边所在直线的垂线段叫 做三角形的高;三角形三条高线的交点,叫三角形的 垂心 (4)中位线:连结三角形两边中点的线段,叫做三角形的 中位线4外心:三角形三边的中垂线的交点,叫三角形的外心,它到各顶点的 距离相等;锐角三角形的外心在形内,钝角三角形的外心在形 外,直角三角形的外心在斜边中点5全等三角形的性质和判定:(1)性质:全等三角形对应边相等,对应角相等注意:全等三 角形对应边上的高、中线相等;对应角的平分线相等;全等 三角形的周长、面积也相等.(2)判定:对应相等的两个三角形全等(SAS);对应相等的两个三角形全等(ASA);对应相等的两个三角形全等(AAS);对应相等的两个三角形全等(SSS);对应相等的两个直角三角形全等(HL)两边和夹角两边和夹角两角和夹边两角和夹边两角和其中一角的对边两角和其中一角的对边三边三边斜边和一条直角边斜边和一条直角边 判定三角形全等的基本思路是:(1)有两边对应相等时,找夹角相等或第三边对应相等;(2)有一边和一角对应相等时,找另一角相等或夹等角的另一边相等;(3)有两个角对应相等时,找一对边对应相等另外,在寻求全等条件时,要善于挖掘图形中公共边、公共角、对顶角等隐含条件如果待证结论所在的两个三角形不全等,则需要添加辅助线,构造全等三角形构造的常用方法有:(1)若已知三角形的中线,往往会用到“中线倍长”的方法;(2)可通过作平行线,构造相等的角,创造三角形全等的条件;(3)截取相等线段或相等角,创造条件在实际解题过程中,要注意结合题意,采取不同的辅助线作法,并注意及时总结基础自测1(2011滨州)某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B5 C7 D9 答案B 解析这个三角形第三边x的范围是43x43,即1x7,只有5在此范围内2(2011苏州)ABC的内角和为()A180 B360 C540 D720 答案A 解析根据内角和定义可知3(2011济宁)如图,AEBD,1120,240,则C的度数是()A10 B20 C30 D40 答案B 解析由AEBD,得AED240.在ACE中,C1801AED1801204020.4(2011衢州)如图,OP平分MON,PAON于点A,点Q是射线OM上的一个动点,若PA2,则PQ的最小值为()A1 B2 C3 D4 答案B 解析因为PAON,且PA2,可知点P到ON的距离等于2,根据OP平分MON,角平分线上的点到角两边的距离相等,当PQOM时,PQ的值最小,为2.5(2011上海)下列命题中,真命题是()A周长相等的锐角三角形都全等 B周长相等的直角三角形都全等 C周长相等的钝角三角形都全等 D周长相等的等腰直角三角形都全等答案答案D题型分类 深度剖析【例 1】(1)(2011河北)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A2 B3 C5 D13 答案B 解析132x132,即11x15.整数x的值为12,13,14,这样的三角形有3个题型一三角形的三边关系 探究提高三角形三边关系性质的实质是“两点之间,线段最短”根据三角形的三边关系,已知三角形的两边a、b,可确定三角形 第三边长c的取值范围|ab|cab.知能迁移1(1)(2012青海)等腰三角形的两边长分别为4和9,则这个三角形的周长为_ 答案22 解析4489,第三边长只能为9,周长49922.(2)(2011南通)下列长度的三条线段,不能组成三角形的是()A3,8,4 B.4,9,6 C15,20,8 D.9,15,8 答案A 解析因为348,所以长度为3,8,4的三条线段不能组成三角形题型二三角形的内角、外角的性质【例 2】一个零件的形状如图所示,按规定A90,B和C分别是32和21,检验工人量得BDC148,就断定这个零件不合格,请说明理由解延长BD交AC于E.DEC是ABE的外角,DECAB9032122.同理,BDCCDEC 21122143148.这个零件不合格探究提高有关求三角形角的度数的问题,首先要明确所求的角和哪些三角形有密切联系,若没有直接联系,可添加辅助线构建“桥梁”知能迁移2如图,P是ABC内一点,延长BP交AC于点D,用“BDC,同理BDCBAC.BPCBDCBAC.题型三运用全等三角形的判定【例 3】已知命题:如图,点A、D、B、E在同一条直线上,且ADBE,AFDE,则ABCDEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明解证明:ADBE,AFDE,无法判定ABCDEF,这是假命题 添上一个条件,比如ACDF.ADBE,ADDBBEDB,即ABDE.又AFDE,ACDF.ABCDEF(SAS)亦可添加:CF,或ABCE.探究提高本题可运用多种判定方法得到三角形全等的结论,但切记“两边一对角”是不能判定两个三角形全等的知能迁移3(2012金华)如图,在ABC中,D是BC边上的点(不与B、C重合),F、E分别是AD及其延长线上的点,CFBE.请你添加一个条件,使BDECDF(不再添加其它线段,不再标注或使用其他字母),并给出证明 (1)你添加的条件是:_;(2)证明解(1)在BDDC(或点D是线段BC的中点),FDED,CFBE 中,任选一个即可 (2)以BDDC为例进行证明 CFBE,FCDEBD.又BDDC,FDCEDB,BDECDF.题型四运用全等三角形的性质【例 4】已知:如图,在ABC中,D是BC的中点,EDDF,求证BECFEF.解题示范规范步骤,该得的分,一分不丢!证明:延长ED到M,使DMED,连接CM、FM.D是BC的中点,2分 BDCD.在EDB与MDC中,EDBMDC(SAS)6分 BECM.在FMC中,CFCMMF,又EDDF,EDDM,EFFM.CFCMEF,即CFBEEF.8分探究提高利用中线加倍延长法,把BE、CF、EF集中在一个三角形中,利用三角形的两边之和大于第三边来证知能迁移4(2011浙江)如图,点D、E分别在AC、AB上 (1)已知:BDCE,CDBE,求证:ABAC;(2)分别将“BDCE”记为,“CDBE”记为,“ABAC”记为.添加条件、,以为结论构成命题1;添加条件、,以为结论构成命题2.命题1是命题2的_命题,命题2是_命题(选择“真”或“假”填入空格)解证明:(1)连接BC,BDCE,CDBE,BCCB,DBCECB(SSS)DBCECB.ABAC.(2)逆,假 答题规范考题再现如图,ABAC,D、E分别在AB、AC上,且CDBE,求证:ADCAEB.学生作答 证明:在ADC和ABE中,ABEACD,ADCAEB.8留心“边边角”规范解答 证明:连接BC.ABAC,ABCACB.在DBC和ECB中,DBCECB(SAS)BDCCEB.ADCAEB.老师忠告1先看一个事实,如图,将等腰ABC的底边BC延长线上的任一点和顶点A相连,所得的DAB和DAC无疑是不全等的,由此可知,有两边及其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等因此,在判定三角形全等时,一定要留心“边边角”,别上当哟2全等三角形的证明是几何证明的基础,关系到以后几何学习的成败,要熟练掌握判定三角形全等的方法,有“边边边”,“边角边”,“角角边”及“斜边、直角边”3怎样添加辅助线:做个比喻,思考某些题目,在沟通已知和结论的途中,一条河挡住了道路,这时添加必要的辅助线,就好像在河上架起桥梁添加辅助线的原则一是当分析思考出现上述需要时才添加,而不要在思考伊始就乱连乱添,把图形复杂化,反而把思路搞乱;原则二是顺着思考分析的方向,注意沟通过程中的需要,而水到渠成地添上适宜的一笔;原则三是注意总结在什么情况下需要怎样添加的规律,如对于涉及(指题设或结论中出现)三角形的(中点)中线的问题,可以把该中线延长一倍,再把其端点和中点所在的边的端点相连结,构成三角形全等.思想方法 感悟提高方法与技巧 1.三角形涉及的相关概念较多,准确地理解概念,掌握分类的思想方法,养成全面、周到地考虑问题的习惯2.三角形全等的判定定理和性质定理,直接或间接地推出平面几何中绝大多数的定理;判定三角形全等并利用三角形全等的性质,是不少题目解决过程中重要的一步,因此,要学会完成证明的思考方法,培养和提高逻辑思维和推理的能力 3.平面几何主要学习的内容是推理论证,对于一道题目,如何去想出它的证法,基本的思考方法有:(1)顺推分析:从已知条件出发,运用相应的定理,分别或联合几个已知条件加以发展,一步一步地去靠近欲证目标;(2)逆推分析:从欲证结论入手,分析达到欲证的可能途径,逐步沟通它与已知条件的联系,从而找到证明方法;(3)顺推分析与逆推分析相结合;(4)联想分析:对于一道与证明过的题目有类似之处的新题目,分析它们之间的相同点与不同点,尝试把对前一道题的思考转用于现在的题目中,从而找到它的解法 4.证明三角形全等的两种基本思考途径:(1)当图形明显具有对称性(轴对称或中心对称)或旋转性时,思考途径是:从对居于对称位置的线、角或部分证相等或全等入手,或由前一次全等为后一次全等提供所缺的条件,或利用特殊三角形、特殊四边形的性质提供所缺的条件;(2)图形不具有明显的对称性或旋转性,此时要证明两个三角形全等,在思考上的关键是找准对应关系其方法是:已知条件中相等的角、边对应,则它们所对的边、角对应;欲证相等的边、角对应,它们所对的边、角也是对应的;最后所余的一组边、一组角分别对应失误与防范1三角形三边关系揭示了三角形边之间的一个重要性质,可以用来判断三条线段能否构成三角形,证明线段的不等关系,是以后推理常用的依据2三角形的高的位置不同于中线和角平分线,后两者总在三角形的内部,前者则要视三角形的形状而定锐角三角形三条高在其内部,钝角三角形有两条高在其外部,直角三角形有两条高恰好重合于两条直角边因此,这两条高既不在形内,也不在形外3在解答几何问题时,如果没有给出具体的图形,都应该先考虑是否有多种情况,有些命题在一种情况下是真命题,而在另一种情况下就可能不是真命题完成考点跟踪训练21- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 复习 第四 4.2 基本 图形 三角形 全等 课件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文