(春季拔高课程)九年级数学 第1讲 二次函数探究—二次函数与相似三角形的综合问题教案-人教版初中九年级全册数学教案.doc
《(春季拔高课程)九年级数学 第1讲 二次函数探究—二次函数与相似三角形的综合问题教案-人教版初中九年级全册数学教案.doc》由会员分享,可在线阅读,更多相关《(春季拔高课程)九年级数学 第1讲 二次函数探究—二次函数与相似三角形的综合问题教案-人教版初中九年级全册数学教案.doc(12页珍藏版)》请在咨信网上搜索。
二次函数与相似三角形的综合问题 知识点 二次函数综合;勾股定理;相似三角形的性质; 教学目标 1. 熟练运用所学知识解决二次函数综合问题 2.灵活运用数形结合思想 教学重点 巧妙运用数形结合思想解决综合问题; 教学难点 灵活运用技巧及方法解决综合问题; 教学过程 一、课堂导入 二次函数的综合问题是中考压轴题常考题型之一,难度较大。主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。就本节二次函数与相似三角形的点存在性问题,主要考查了学生能否将相似三角形的性质与判定融入到二次函数,在函数图像中构造相似图形的能力。 二、复习预习 勾股定理及逆定理 1.定理:直角三角形两直角边a,b的平方和等于斜边c的平方。(即:a2+b2=c2) 2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 3.逆定理:如果三角形的三边长:a,b,c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边为c。 (2)验证c2和a2+b2是否具有相等的关系,若a2+b2=c2,则△ABC是以∠C为直角的直角三角形。 三、知识讲解 考点1 二次函数的基础知识 1.一般地,如果y=ax2+bx+c(a,b,c是常数且a≠0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 当b=c=0时,二次函数y=ax2是最简单的二次函数. 2.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的三种表达形式分别为: 一般式:y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式; 顶点式:y=a(x-h)2+k,通常要知道顶点坐标或对称轴才能求出此解析式; 交点式:y=a(x-x1)(x-x2),通常要知道图像与x轴的两个交点坐标x1,x2才能求出此解析式; 对于y=ax2+bx+c而言,其顶点坐标为(-,).对于y=a(x-h)2+k而言其顶点坐标为(h,k),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 相似三角形的概念及其性质 1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。 2.性质定理: (1)相似三角形的对应角相等; (2)相似三角形的对应边成比例; (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比; (4)相似三角形的周长比等于相似比; (5)相似三角形的面积比等于相似比的平方. 考点3 探究三角形相似的一般思路 解答三角形相似的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及到动态问题要以静制动,动中求静,具体如下: (1)假设结论成立,分情况讨论。探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现让证明两个三角形相似的题目)或涉及到动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,从而分情况讨论; (2)确定分类标准:在分类时,先要找出分类的标准,看两个三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角来分类讨论; (3)建立关系式并计算。由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标; 四、例题精析 考点一 在函数中运用“SAS”判定定理构造相似三角形 例1 直线分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点. (1) 写出点A、B、C、D的坐标; (2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标; (3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由. 例2如图,已知点A (-2,4) 和点B (1,0)都在抛物线上. (1)求m、n; (2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似. 考点二 运用相似三角形的性质解决二次函数综合问题 例3如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点. (1)直线AB总经过一个定点C,请直接出点C坐标; (2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5; (3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离. 例4如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD. (1)若点A的坐标是(﹣4,4) ①求b,c的值; ②试判断四边形AOBD的形状,并说明理由; (2)是否存在这样的点A,使得四边形AOBD是矩形? 若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由. 课程小结 有针对性的对勾股定理、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与相似三角形的综合问题提供有利的依据。在探究二次函数与相似三角形的综合问题时,抓住已有的信息及条件在函数图像中构造出相似三角形,并能运用相似三角形的性质解决问题,掌握此类问题的解题思路及技巧是解决问题的关键。 解析 例1(1)A(3,0),B(0,1),C(0,3),D(-1,0). (2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以 解得 所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4). (3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG. 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°. 因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么. Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况: ①当时,.解得.所以,. ②当时,.解得.所以,. 【总结与反思】1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角. 2.用待定系数法求抛物线的解析式,用配方法求顶点坐标. 3.第(3)题判断∠ABQ=90°是解题的前提. 4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个. 例2【规范解答】(1) 因为点A (-2,4) 和点B (1,0)都在抛物线上,所以 解得,. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB=5.因为四边形A A′B′B为菱形,所以A A′=B′B= AB=5.因为,所以原抛物线的对称轴x=-1向右平移5个单位后,对应的直线为x=4. 因此平移后的抛物线的解析式为. 图2 (3) 由点A (-2,4) 和点B′ (6,0),可得A B′=. 如图2,由AM//CN,可得,即.解得.所以.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D. ①如图3,当时,,解得.此时OD=3,点D的坐标为(3,0). ②如图4,当时,,解得.此时OD=,点D的坐标为(,0). 【总结与反思】1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B′ 的坐标、AC和B′C的长. 2.抛物线左右平移,变化的是对称轴,开口和形状都不变. 3.探求△ABC与△B′CD相似,根据菱形的性质,∠BAC=∠CB′D,因此按照夹角的两边对应成比例,分两种情况讨论. 例3【规范解答】解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4. ∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4). (2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或. ∴点A的坐标为(﹣3,),点B的坐标为(2,2). 过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示. 设点P的横坐标为a,则点Q的横坐标为A.∴yP=a2,yQ=﹣a+3.∵点P在直线AB下方, ∴PQ=yQ﹣yP =﹣a+3﹣a2∵AM+NB=a﹣(﹣3)+2﹣a=5. ∴S△APB=S△APQ+S△BPQ=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5. 整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.当a=﹣2时,yP=×(﹣2)2=2.此时点P的坐标为(﹣2,2). 当a=1时,yP=×12=.此时点P的坐标为(1,). ∴符合要求的点P的坐标为(﹣2,2)或(1,). (3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2. ∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF. ∵∠AED=∠BFD,∠ADE=∠DBF, ∴△AED∽△DFB.∴. 设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2. AE=yA﹣yE=m2﹣t2.BF=yB﹣yF=n2﹣t2.ED=xD﹣xE=t﹣m,DF=xF﹣xD=n﹣t. ∵,∴=.化简得:mn+(m+n)t+t2+4=0. ∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根. ∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0, 即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2). 过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示. ∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG, ∴DC====2. 过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时, 点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2. 【总结与反思】(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可. (2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标. (3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题. 例4【规范解答】(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4) 把A、C代入y═﹣x2+bx+c得, 得,解得; ②四边形AOBD是平行四边形;理由如下: 由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,∴四边形AOBD是平行四边形. (2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°, ∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC, ∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c, ∴A点坐标为(c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣+c•c+c, ∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2). 【总结与反思】 (1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值; ②求证AD=BO和AD∥BO即可判定四边形为平行四边形; (2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为C.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 春季拔高课程九年级数学 第1讲 二次函数探究二次函数与相似三角形的综合问题教案-人教版初中九年级全册数学教案 春季 拔高 课程 九年级 数学 二次 函数 探究 相似 三角形 综合 问题 教案 人教版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:(春季拔高课程)九年级数学 第1讲 二次函数探究—二次函数与相似三角形的综合问题教案-人教版初中九年级全册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7453125.html
链接地址:https://www.zixin.com.cn/doc/7453125.html