九年级数学下册 3.5 直线和圆的位置关系教案一 湘教版.doc
《九年级数学下册 3.5 直线和圆的位置关系教案一 湘教版.doc》由会员分享,可在线阅读,更多相关《九年级数学下册 3.5 直线和圆的位置关系教案一 湘教版.doc(7页珍藏版)》请在咨信网上搜索。
直线和圆的位置关系 教学目标 (一)教学知识点 1.理解直线与圆有相交、相切、相离三种位置关系. 2.了解切线的概念,探索切线与过切点的直径之间的关系. (二)能力训练要求 1.经历探索直线与圆位置关系的过程,培养学生的探索能力. 2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化. (三)情感与价值观要求 通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性. 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 经历探索直线与圆位置关系的过程. 理解直线与圆的三种位置关系. 了解切线的概念以及切线的性质. 教学难点 经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系. 探索圆的切线的性质. 教学方法 教师指导学生探索法. 教具准备 投影片三张 第一张:(记作§3.5.1A) 第二张:(记作§3.5.1B) 第三张:(记作§3.5.1C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些? [生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内. [师]本节课我们将类比地学习直线和圆的位置关系. Ⅱ.新课讲解 1.复习点到直线的距离的定义 [生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离. 如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离. 2.探索直线与圆的三种位置关系 [师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系? [生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系. [师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢? [生]有三种位置关系: [师]直线和圆有三种位置关系,如下图: 它们分别是相交、相切、相离. 当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangent line). 当直线与圆有两个公共点时,叫做直线和圆相交. 当直线与圆没有公共点时,叫做直线和圆相离. 因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗? [生]当直线与圆有唯一公共点时,这时直线与圆相切; 当直线与圆有两个公共点时,这时直线与圆相交; 当直线与圆没有公共点时,这时直线与圆相离. [师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢? [生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系. [师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定. 投影片(§3.5.1A) (1)从公共点的个数来判断: 直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离. (2)从点到直线的距离d与半径r的大小关系来判断: d<r时,直线与圆相交; d=r时,直线与圆相切; d>r时,直线与圆相离. 投影片(§3.5.1B) [例1]已知Rt△ABC的斜边AB=8cm,AC=4cm. (1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切? (2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系? 分析:根据d与r间的数量关系可知: d=r时,相切;d<r时,相交;d>r时,相离. 解:(1)如上图,过点C作AB的垂线段CD. ∵AC=4cm,AB=8cm; ∴cosA=, ∴∠A=60°. ∴CD=ACsinA=4sin60°=2(cm). 因此,当半径长为2cm时,AB与⊙C相切. (2)由(1)可知,圆心C到AB的距离d=2cm,所以,当r=2cm时,d>r,⊙C与AB相离; 当r=4cm时,d<r,⊙C与AB相交. 3.议一议(投影片§3.5.1C) (1)你能举出生活中直线与圆相交、相切、相离的实例吗? (2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗? (3)如图(2),直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由. 对于(3),小颖和小亮都认为直径AB垂直于CD.你同意他们的观点吗? [师]请大家发表自己的想法. [生](1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交; 自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切; 杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离. (2)图(1)中的三个图形是轴对称图形.因为沿着d所在的直线折叠,直线两旁的部分都能完全重合.对称轴是d所在的直线,即过圆心O且与直线l垂直的直线. (3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与⊙O相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此∠BAC=∠BAD=90°. [师]因为直线CD与⊙O相切于点A,直径AB与直线CD垂直,直线CD是⊙O的切线,因此有圆的切线垂直于过切点的直径. 这是圆的切线的性质,下面我们来证明这个结论. 在图(2)中,AB与CD要么垂直,要么不垂直.假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB与CD垂直. 这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立. Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结 本节课学习了如下内容: 1.直线与圆的三种位置关系. (1)从公共点数来判断. (2)从d与r间的数量关系来判断. 2.圆的切线的性质:圆的切线垂直于过切点的半径. 3.例题讲解. Ⅴ.课后作业 习题3.7 Ⅵ.活动与探究 如下图,A城气象台测得台风中心在A城正西方向300千米的B处,并以每小时10千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域. (1)A城是否会受到这次台风的影响?为什么? (2)若A城受到这次台风的影响,试计算A城遭受这次台风影响的时间有多长? 分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A城能否受到影响,即比较A到直线BF的距离d与半径200千米的大小.若d>200,则无影响,若d≤200,则有影响. 解:(1)过A作AC⊥BF于C. 在Rt△ABC中,∵∠CBA=30°,BA=300, ∴AC=ABsin30°=300×=150(千米). ∵AC<200,∴A城受到这次台风的影响. (2)设BF上D、E两点到A的距离为200千米,则台风中心在线段DE上时,对A城均有影响,而在DE以外时,对A城没有影响. ∵AC=150,AD=AE=200, ∴DC=. ∴DE=2DC=100. ∴t==10(小时). 答:A城受影响的时间为10小时. 板书设计 §3.5.1 直线和圆的位置关系(一) 一、1.复习点到直线的距离的定义 2.探索直线与圆的三种位置关系 (1)从公共点个数来判断 (2)从点到直线的距离d与半径r间的数量关系来判断. 3.议一议 二、课堂练习 随堂练习 三、课时小结 四、课后作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学下册 3.5 直线和圆的位置关系教案一 湘教版 九年级 数学 下册 直线 位置 关系 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文