分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型八年级数学上册 第十四章 整式的乘法与因式分解14.2 乘法公式14.2.2 完全平方公式教案2(新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc

  • 上传人:s4****5z
  • 文档编号:7452935
  • 上传时间:2025-01-05
  • 格式:DOC
  • 页数:3
  • 大小:201KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    八年级数学上册 第十四章 整式的乘法与因式分解14.2 乘法公式14.2.2 完全平方公式教案2新版新人教版-新版新人教版初中八年级上册数学教案 八年 级数 上册 第十四 整式 乘法 因式分解
    资源描述:
    14.2.2 完全平方公式   教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.   教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.   教学过程:   一、提出问题,学生自学   问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?   (1)(p+1)2 = (p+1)(p+1) = _______;   (m+2)2 = _______;   (2)(p−1)2 = (p−1)(p−1) = _______;   (m−2)2 = _______;   学生讨论,教师归纳,得出结果:   (1) (p+1)2 = (p+1)(p+1) = p2+2p+1      (m+2)2 = (m+2)(m+2) = m2+ 4m+4   (2) (p−1)2 = (p−1)(p−1) = p2−2p+1      (m−2)2 = (m−2)(m−2) = m2− 4m+4   分析推广:结果中有两个数的平方和,而2p=2•p•1,4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.   推广:计算(a+b)2 = __________;(a−b)2 = __________.    得到公式,分析公式   结论:     (a+b)2=a2+2ab+b2       (a−b)2=a2−2ab+b2      即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.   二、几何分析:   你能根据图(1)和图(2)的面积说明完全平方公式吗?   图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2 = a2+2ab+b2,即说明(a+b)2 = a2+2ab+b2.   类似地可由图(2)说明(a−b)2 = a2−2ab+b2.   三、例题:   例1.应用完全平方公式计算:   (1)( 4m+n)2    (2)(y−)2    (3)(−a−b)2    (4)(b−a)2   解答:(1)( 4m+n)2 = 16m2+8mn+n2   (2) (y−)2 = y2−y+   (3) (−a−b)2 = a2+2ab+b2   (4) (b−a)2 = b2−2ba+a2   例2.运用完全平方公式计算:   (1)1022    (2)992   解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404   (2)992 = (100−1)2 = 10000−200+1 = 9801   四、添括号法则在公式里的运用   问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a−b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?   学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c,a−(b+c) = a−b−c   反过来,就得到了添括号法则:a+b+c = a+(b+c),a−b−c = a−(b+c)   理解法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.   总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.   五、小结:   1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.   2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:八年级数学上册 第十四章 整式的乘法与因式分解14.2 乘法公式14.2.2 完全平方公式教案2(新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
    链接地址:https://www.zixin.com.cn/doc/7452935.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork