八年级数学上册 2.6有理数的加减混合运算(2课时)培优教案系列 北北师大版.doc
《八年级数学上册 2.6有理数的加减混合运算(2课时)培优教案系列 北北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 2.6有理数的加减混合运算(2课时)培优教案系列 北北师大版.doc(8页珍藏版)》请在咨信网上搜索。
一、课题 § 6有理数的加减混合运算(1) 二、教学目标 1.使学生理解有理数的加减法可以互相转化,并了解代数和概念; 2.使学生熟练地进行有理数的加减混合运算; 3.培养学生的运算能力. 三、教学重点和难点 重点:准确迅速地进行有理数的加减混合运算. 难点:减法直接转化为加法及混合运算的准确性. 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有认知结构提出问题 1.叙述有理数加法法则. 2.叙述有理数减法法则. 3.叙述加法的运算律. 4.符号“+”和“-”各表达哪些意义? 5.化简:+(+3);+(-3);-(+3);-(-3). 6.口算: (1)2-7; (2)(-2)-7; (3)(-2)-(-7); (4)2+(-7); (5)(-2)+(-7); (6)7-2; (7)(-2)+7; (8)2-(-7). (二)、讲授新课 1.加减法统一成加法算式 以上口算题中(1),(2),(3),(6),(8)都是减法,按减法法则可写成加上它们的相反数.同样,(-11)-7+(-9)-(-6)按减法法则应为(-11)+(-7)+(-9)+(+6),这样便把加减法统一成加法算式.几个正数或负数的和称为代数和. 再看16-(-2)+(-4)-(-6)-7写成代数和是16+2+(-4)+6+(-7). 既然都可以写成代数和,加号可以省略,每个括号都可以省略,如: (-11)-7+(-9)-(-6)=-11-7-9+6,读作“负11,负7,负9,正6的和”,运算上可读作“负11减7减9加6”; 16+2+(-4)+6+(-7)=16+2-4+6-7,读作“正16,正2,负4,正6,负7的和”,运算上读作“16加2减4加6减7”. 例1 把(-20)+(+3)-(+5)-(-7)写成省略括号的和的形式,并把它读出来. 课堂练习 (1)把下面各式写成省略括号的和的形式: ①10+(+4)+(-6)-(-5); ②(-8)-(+4)+(-7)-(+9). (2)说出式子8-7+4-6两种读法. 2.加法运算律的运用 既然是代数和,当然可以运用有理数加法运算律:a+b=b+a,(a+b)+c=a+(b+c). 例2 计算-20+3-5+7. 解:-20+3-5+7 =-20-5+3+7 =-25+10 =-15. 注意这里既交换又结合,交换时应连同数字前的符号一起交换. 课堂练习 (1)计算: ①-1+2-3-4+5; ②(-8)-(+4)+(-6)-(-1). (2)用较为简便的方法计算下列各题: (三)、小结 1.有理数的加减法可统一成加法. 2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换. 七、练习设计 1.计算: (1)3-8; (2)-4+7; (3)-6-9; (4)8-12; (5)-15+7; (6)0-2; (7)-5-9+3; (8)10-17+8; (9)-3-4+19-11; (10)-8+12-16-23. 2.计算: (1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8; 3.计算: (1)-216-157+348+512-678; (2)81.26-293.8+8.74+111; 4.计算: (1)12-(-18)+(-7)-15; (2)-40-28-(-19)+(-24)-(-32); 5.计算: (1)(+12)-(-18)+(-7)-(+15); (2)(-40)-(+28)-(-19)+(-24)-(32); (3)(+4.7)-(-8.9)-(+7.5)+(-6); 八、板书设计 2.6有理数的加减混合运算(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 有理数的加减混合运算用两个课时进行教学.这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算. 一、课题 §2.6有理数的加减混合运算(2) 二、教学目标 让学生熟练地进行有理数加减混合运算,并利用运算律简化运算. 三、教学重点和难点 重点:加减运算法则和加法运算律. 难点:省略加号与括号的代数和的计算. 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有认知结构提出问题 什么叫代数和?说出-6+9-8-7+3两种读法. (二)、讲授新课 1.计算下列各题: 2.计算: (1)-12+11-8+39; (2)+45-9-91+5; (3)-5-5-3-3; (7)-6-8-2+3.54-4.72+16.46-5.28; 3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值: (1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d; (5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d; (9)(a-c)-(b-d); (10)a-c-b+d. 请同学们观察一下计算结果,可以发现什么规律? a-(b+c)=a-b-c; a-(b+c+d)=a-b-c-d; a-(b-d)=a-b+d; (a+b)-(c+d)=a+b-c-d; (a-c)-(b-d)=a-c-b+d. 括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变. 4.用较简便方法计算: (4)-16+25+16-15+4-10. (三)、课堂练习 1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号: (1)两个数相加,和一定大于任一个加数. ( ) (2)两个数相加,和小于任一个加数,那么这两个数一定都是负数. ( ) (3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号. ( ) (4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和. ( ) (5)两数差一定小于被减数. ( ) (6)零减去一个数,仍得这个数. ( ) (7)两个相反数相减得0. ( ) (8)两个数和是正数,那么这两个数一定是正数. ( ) 2.填空题: (1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______. (2)若a<0,那么a和它的相反数的差的绝对值是______. (3)若|a|+|b|=|a+b|,那么a,b的关系是______. (4)若|a|+|b|=|a|-|b|,那么a,b的关系是______. (5)-[-(-3)]=______,-[-(+3)]=______. 这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化. 七、练习设计 1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值: (1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c. 2.分别根据下列条件求代数式x-y-z+w的值: (1)x=-3,y=-2,z=0,w=5; (2)x=0.3,y=-0.7,z=1.1,w=-2.1; 3.已知3a=a+a+a,分别根据下列条件求代数式3a的值: (1)a=-1; (2)a=-2; (3)a=-3; (4)a=-0.5. 4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小? (2)当b<0时,a,a-b,a+b,哪个最大?哪个最小? 5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例. (1)若a,b同号,则a+b=|a|+|b|. ( ) (2)若a,b异号,则a+b=|a|-|b|. ( ) (3)若a<0、b<0,则a+b=-(|a|+|b|). ( ) (4)若a,b异号,则|a-b|=|a|+|b|. ( ) (5)若a+b=0,则|a|=|b|. ( ) 6.计算:(能简便的应当尽量简便运算) 八、板书设计 §2.6有理数的加减混合运算(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能.讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正. 2.关于“去括号法则”,只要求学生了解,并不要求追究所以然.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 2.6有理数的加减混合运算2课时培优教案系列 北北师大版 八年 级数 上册 2.6 有理数 加减 混合 运算 课时 教案 系列 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文