中考数学一轮复习 第13讲 反比例函数教案-人教版初中九年级全册数学教案.doc
《中考数学一轮复习 第13讲 反比例函数教案-人教版初中九年级全册数学教案.doc》由会员分享,可在线阅读,更多相关《中考数学一轮复习 第13讲 反比例函数教案-人教版初中九年级全册数学教案.doc(6页珍藏版)》请在咨信网上搜索。
第13讲:反比例函数 一、复习目标 1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象 2、能够将反比例函数有关的实际应用题转化为函数问题 二、课时安排 1课时 三、复习重难点 1、反比例函数图象与性质 2、反比例函数图象、性质的应用 四、教学过程 (一)知识梳理 反比例函数的概念 定义 形如________(k≠0,k为常数)的函数叫做反比例函数,其中x是________,y是x的函数,k是________ 关系式 y=或y=kx-1或xy=k(k≠0) 防错提醒 (1)k≠0;(2)自变量x≠0;(3)函数值y≠0 反比例函数的图象与性质 (1) 反比例函数的图象 呈现形式 反比例函数y= (k≠0)的图象是________ 对称性 它既是关于________对称的中心对称图形,也是轴对称图形,其对称轴为第一、三象限或第二、四象限坐标轴夹角的平分线,即直线y=x或直线y=-x (2)反比例函数的性质 函数 图象 所在象限 性质 y=(k≠0) k>0 一、三象限 (x,y同号) 在每个象限内y随x增大而减小 k<0 二、四象限 (x,y异号) 在每个象限内,y随x增大而增大 (3)反比例函数比例系数k的几何意义 k的几何意义 反比例函数图象上的点(x,y)具有两数之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数|k| 推导 如图,过双曲线上任一点P作x轴,y轴的垂线段PM、PN,所得的矩形PMON的面积S=PM·PN=|y|·|x|=|xy|. ∵y=,∴xy=k,∴S=|k| 拓展 过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数 反比例函数的应用 求函数 关系式 方法步骤 利用待定系数法确定反比例函数:①根据两变量之间的反比例关系,设y=; ②代入图象上一个点的坐标,即x、y的一对对应值,求出k的值; ③写出关系式 反比例函数与一次函数的图象的交点的求法 求直线y=k1x+b(k≠0)和双曲线y=的交点坐标就是解这两个函数关系式组成的方程组 (二)题型、技巧归纳 考点1:反比例函数的概念 技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立. 考点2:反比例函数的图象与性质 技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y=的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k|,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题. 考点3反比例函数的应用 技巧归纳:先根据双曲线上点C的坐标求出m的值,从而确定点C的坐标,再将点C的坐标代入一次函数关系式中确定n的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y=的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k|,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题. (三)典例精讲 例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A.(-3,2) B.(3,2) C.(2,3) D.(6,1) [解析] 设反比例函数的关系式为y=,把点(-1,6)代入可求出k=-6,所以反比例函数的关系式为y=,故此函数也经过点(-3,2),答案选A. 例2在反比例函数y=(k<0)的图象上有两点,,则y1-y2的值是( ) A.负数 B.非正数 C.正数 D.不能确定 [解析] 反比例函数y=:当k<0时,该函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大. 又∵点(-1,y1)和均位于第二象限,-1<-, ∴y1<y2,∴y1-y2<0,即y1-y2的值是负数,故选A. 例3 如图点A,B在反比例函数y= (k>0,x>0)的图象上,过点A,B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________. [解析] ∵S△AOC=6,OM=MN=NC=OC, ∴S△OAC=×OC×AM,S△AOM=×OM×AM= S△OAC=2=|k|. 又∵反比例函数的图象在第一象限,k>0,则k=4. 例4 如图13-2,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m). (1)求m和n的值; (2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y= 交于点P、Q,求△APQ的面积. 解:(1) ∵点C(1,m)在双曲线y=上,∴m=4,将点C(1,4)代入y=2x+n中,得n=2; (2)在y=2x+2中,令y=0,得x=-1,即A(-1,0).将x=3代入y=2x+2和y=,得点P(3,8),Q,∴PQ=8-=.又∵AD=3-(-1)=4,∴△APQ的面积=×4×=. (四)归纳小结 本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题 (五)随堂检测 1、已知点A(-2,y1)、B(1,y2)和C(2,y3)都在反比例函数 (k<0)的图象上,那么y1、y2和y3的大小关系如何? 2、已知反比例函数 图象上三个点的坐标分别是A(-2,y1)、B(-1,y2)、C(2,y3),能正确反映y1、y2、y3的大小关系的是( ) A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y2>y3>y1 3、已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3). (Ⅰ)求这个函数的解析式; (Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x<﹣1时,求y的取值范围. 4、如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象有一个交点A(m,2). (1)求m的值; (2)求正比例函数y=kx的解析式; (3)试判断点B(2,3)是否在正比例函数图象上,并说明理由. 五、板书设计 反比例函数 六、作业布置 反比例函数课时作业 七、教学反思 借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。进行多种题型的训练,使同学们能灵活运用本节重点知识。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学一轮复习 第13讲 反比例函数教案-人教版初中九年级全册数学教案 中考 数学 一轮 复习 13 反比例 函数 教案 人教版 初中 九年级 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文