九年级数学上册 2.2 用配方法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
《九年级数学上册 2.2 用配方法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《九年级数学上册 2.2 用配方法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc(6页珍藏版)》请在咨信网上搜索。
第二章 一元二次方程 2.用配方法求解一元二次方程(二) 一、学生知识状况分析 学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。 学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。 二、教学任务分析 在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是: ①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能; ②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想; ③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力. 三、教学过程分析 本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。 第一环节 复习回顾 活动内容:回顾配方法解二次项系数为1的一元二次方程的基本步骤。 活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。 实际效果:教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0 移项,得 x2-6x= 40 方程两边都加上32(一次项系数一半的平方),得 x2-6x+32=40+32 即 (x-3)2=49 开平方,得 x-3 =±7 即 x-3=7或x-3=-7 所以 x1=10,x2=-4 学生一般都能整理出配方法解方程的基本步骤: 通过对这个方程基本步骤地熟悉学生们顺畅的理清思路,掌握了每一步的理论依据,增强了解题的信心,达到预期的目的。 配方法的两节课连贯性强,作为一种新的方法,学生在新授期间应多接触,熟练掌握基本的步骤,掌握每一步的原理,这样会增强学生对这个知识点的驾驭能力。一般的一元二次方程配方解法的步骤(移项,配方,开平方,求解)及注意事项。移项的目的是将二次项和一次项调整到等号的左边,常数项调整到右边;配方是将方程的两边添加一个常数项(一次项系数一半的平方)原理是根据公式a+2ab+b=(a+b)进行的;开平方的原理是平方根的定义,需要注意一个正数有两个平方根,它们是互为相反数;求解的过程是解两个一元一次方程,要注意符号的变化。 第二环节:情境引入 活动内容:1.将下列各式填上适当的项,配成完全平方式口头回答. 1.x2+2x+________=(x+______)2 2.x2-4x+________=(x-______)2 3.x2+________+36=(x+______)2 4.x2+10x+________=(x+______)2 5. x2-x+________=(x-______)2 2.请同学们比较下列两个一元二次方程的联系与区别 1.x2+6x+8=0 2.3x2+18x+24=0 探讨方程2的应如何去解呢? 活动目的:通过对第一部分的五个口答练习题的训练,熟悉完全平方式的三项与平方形式的联系,第二部分的两个习题之间的区别是方程2的二次项系数为3,不符合上节课解题的基本形式,联系是当方程两边同时除以3以后,这两个方程式同解方程。学生们作了方程的变形以后,对二次项系数不为1的方程的解法有了初步的感受和思路。 实际效果:学生对第一部分五个口答题的积极抢答,调动了各自的思维,进入了积极学习的状态;比较第二部分中两个方程系数之间的区别与联系,学生们发现二次项系数为1仅是方程中的一小部分,怎样将其它类型的方程转化成这类方程非常关键,这个比较也点明了转化的方向和思路,为后续解这个方程做好了充分的铺垫,学生解决它已是轻车熟路的事情。 第三环节:讲授新课 活动内容1:讲解例题 例2 解方程3x2+8x-3=0 解:方程两边都除以3,得 移项,得 配方,得 活动目的:通过对例2的讲解,继续拓展规范配方法解一元二次方程的过程.让学生充分理解掌握用配方法解一元二次方程的基本思路,关键是将方程转化成形式,特别强调当一次项系数为分数时,所要添加常数项仍然为一次项系数一半的平方,理解这样做的原理,树立解题的信心。另外,得到 后,在移项得到要注意符号问题,这一步在计算过程中容易出错。 实际效果:经过这一环节,学生对配方法的特点有了深入的了解,通过例题的处理,进一步把握了配方法的基本思路,熟悉了其步骤。 活动内容2:应用提高: 做一做:一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(S)满足关系:h=15t-5t2,小球何时能达到10米的高度? 解:根据题意得 15t-5t2=10 方程两边都除以-5,得 t2-3t=-2 配方,得 活动目的:在前边学习的基础上,通过例3进一步提高学生分析问题,解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。 实际效果:大部分学生通过独立思考,根据题意很快列出了方程,解方程的过程比较顺畅,最终得到两个时间t的值分别为1和2,根据实际情景怎样理解这两个时间呢?这就是很好的数学应用,体现数学的价值,很多学生能想象出当时间为1秒时,小球上升到离出发点10米的地方,当时间为2秒钟时,小球是处于下降状态,离出发点也是10米,激发了学生学习数学的热情。 第四环节:练习与提高 活动内容:课本习题2.4问题解决2. 印度古算术中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮。告我总数有多少,两队猴子在一起?大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题。 解:可设猴子的总数是x,由题意可得 (x)2+12=x 解得x1=16 x2=48 答:这群猴子可能是16只,也可能是48只。 活动目的:对利用一元二次方程解决实际问题进行巩固练习,培养学生的阅读能力、数学建模能力。 实际效果:这个题中的等量关系不易发现,课堂上,我给学生们适当的空间,培养学生独立思考的习惯,然后鼓励思维敏捷的同学展示自己的思路,用学生的语言带动学生们学习。 第五环节:课堂小结 活动内容:1.学生总结解一元二次方程的基本步骤; 2.利用一元二次方程解决实际问题的思路,对于结果的理解。 活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想。 实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。 第六环节:布置作业 ⑴课本42页习题2.4第1题; ⑵一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱)与年龄x(岁)大致满足关系:p=0.01x2+0.05x+107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少? ⑶有能力的同学请课余时间用配方法交流探究方程: ax2+bx+c=0 (a不为0)的解法. 四、教学反思 1、创造性的使用了教材: 这节课作为配方的第二节主要是以习题训练为重点,所以我依照书上的例题为重点展示了解方程的基本步骤,另外,添加了辅助性的3个习题;将书上的做一做转化成一个例题,让学生体会利用一元二次方程解决问题的感受;另在作业中配套了一道血压方面的数学问题,学生可以体会到一元二次方程与我们的现实生活息息相关。 2、注意改进的方面 基础较好的学生对于基础性的计算比较快,与此同时,班级中的有7—8名学生对于数据计算有懒惰的思想,速度慢,时间长,如果不能及时解决,这部分学生将落队,或者整节课堂冗长无味,因此如何调控教学进度成为教学中的一个难点。我的办法是老师准备好几个不同层次的习题,当大部分学生做完后,可以为他们提供更高层次的习题,继续引领他们的思维前进,而加强对基础薄弱的同学动手动脑的监督。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学上册 2.2 用配方法求解一元二次方程教学设计2 新版北师大版-新版北师大版初中九年级上册数学教案 九年级 数学 上册 配方 求解 一元 二次方程 教学 设计 新版 北师大 初中 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:九年级数学上册 2.2 用配方法求解一元二次方程教学设计2 (新版)北师大版-(新版)北师大版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7450412.html
链接地址:https://www.zixin.com.cn/doc/7450412.html