八年级数学上册 第二章 实数 2 平方根教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc
《八年级数学上册 第二章 实数 2 平方根教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《八年级数学上册 第二章 实数 2 平方根教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc(13页珍藏版)》请在咨信网上搜索。
2 平方根(第1课时) 一、学生起点分析 学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能. 学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学任务分析 本节课是义务教育课程北师大版教科书八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下: ①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质. ②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识. ③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲. 三、教学过程设计 本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置. 本节课教学流程为: 问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究 第一环节:问题情境 方法一:问题导入 内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为的大的正方形,那么有,=,2是有理数,而是无理数.在前面我们学过若,则叫的平方,反过来叫的什么呢?本节课我们一起来学习. 方法二:问题导入 内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空: ,,,. 目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性. 效果:能表示,,,;能求得,但不能求得,,的值. 说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二. 第二环节:初步探究 内容1:情境引出新概念 ,,,,已知幂和指数,求底数,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性. 效果:学生可以估算出,是1到2之间的数,是2到3之间的数但无法表示,,,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方. 说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数,你能求出来吗?” 内容2:在上面思考的基础上,明晰概念: 一般地,如果一个正数的平方等于,即,那么这个正数就叫做的算术平方根,记为“”,读作“根号”.特别地,我们规定0的算术平方根是0,即. 目的:对算术平方根概念的认识. 效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用巩固概念 例1 求下列各数的算术平方根: (1) 900; (2) 1; (3) ; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是. 效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根. 答案:解:(1)因为,所以900的算术平方根是30,即; (2)因为,所以1的算术平方根是1,即; (3)因为,所以的算术平方根是,即; (4)14的算术平方根是. 内容4:回解课堂引入问题 ,,,那么,,. 第三环节:深入探究 内容1:例2 自由下落物体的高度(米)与下落时间(秒)的关系为.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间? 目的:用算术平方根的知识解决实际问题. 效果:学生多能利用等式的性质将进行变形,再用求算术平方根的方法求得题目的解. 解:将代入公式,得,所以正数(秒). 即铁球到达地面需要2秒. 说明:强调实际问题是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点. 目的:让学生认识到算术平方根定义中的两层含义:中的是一个非负数,的算术平方根也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性. 效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习 一、填空题: 1.若一个数的算术平方根是,那么这个数是; 2.的算术平方根是; 3.的算术平方根是; 4.若,则. 二、求下列各数的算术平方根: 36,,15,0.64,,,. 三、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多少米? 答案:一、1.7;2.;3.;4.16;二、6;;;0.8;;;1. 三、解:由题意得AC=5.5米,BC=4.5米,∠ABC=90°,在Rt△ABC中,由勾股定理得(米).所以帐篷支撑竿的高是米. 目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程. 效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评. 第五环节:学习小结 内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容: (1)算术平方根的概念,式子中的双重非负性:一是a≥0,二是≥0. (2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根. (3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根. 目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质. 第六环节:作业布置 习题2.3 四、教学设计反思 1.细讲概念、强化训练 要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化. “讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数的平方等于,即,那么这个正数就叫做的算术平方根.”被开方数是正的,由平方的意义,也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零. “加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示. “逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用. 2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重非负性的知识进行适当的拓展. 2 平方根(第2课时) 一、学生起点分析 学生在七年级上册学习“棋盘上的故事”就认识了一种运算 “乘方”,并能熟练计算任何一个数的平方.知道正数的平方是正数,负数的平方是正数,0的平方是0.在八年级上册第二章《实数》的学习中又认识了算术平方根的概念和表示方法,已能求非负数的算术平方根.那么这一课时进一步学习平方根.本节也为后面学习 “立方根”做基础. 二、教学任务分析 《平方根》是义务教育课程标准教科书北师大版八年级(上)第二章《实数》的第二节.本节安排了两个课时完成.第一课时是了解数的算术平方根的概念,会用根号表示一个数的算术平方根.在具体的例子中抽象出概念,发展学生的抽象概括能力.本节课是第二课时,继续学习平方根的概念及其运用.并对“平方根”和“算术平方根”,“平方”和“开平方”的概念做辨析,使学生在“引导-探索-类比-发现”中发展学习数学的能力.为此,本节课的教学目标是 ①了解平方根、开平方的概念,明确算术平方根与平方根的区别和联系. ②进一步明确平方与开平方是互逆的运算关系. ③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力. 教学重点是 ①了解平方根、开平方的概念. ②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根. ③了解平方根与算术平方根的区别与联系. 教学难点是 ①平方根与算术平方根的区别和联系. ②负数没有平方根,即负数不能进行开平方的运算. 三、教学过程设计 本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节.第一环节:复习旧知,引入新知;第二环节:形成概念,辨析概念;第三环节:例题和巩固练习;第四环节:课堂小结;第五环节:思维拓展;第六环节:布置作业. 第一环节:复习旧知,引入新知 内容:方法一:复习引入 1.(1)什么叫算术平方根? (2)3的平方等于9,那么9的算术平方根就是 3 . (3)的平方等于,那么的算术平方根就是____________. (4)展厅的地面为正方形,其面积49平方米,则边长_ 7_米. 2.(1)到目前为止,我们已学过哪些运算?这些运算之间的关系如何? (2)乘方有没有逆运算? (3)平方与算术平方根之间的关系? (4)已知折叠着的正方形ABCD面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为______;若面积变为原来的3倍,则边长为_________;若面积变为原来的n倍,则边长为________. 方法二:复习引入 问题:平方等于9,,49的数还有吗? 目的:这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash情景引入,增加动画效果. 效果:借助多媒体吸引学生的注意力,激发学生的学习兴趣. 说明:数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望. 第二环节:新课学习 内容:(一)探究新知 填空: 3=(9 ) (-3)=(9 ) ( )=9 0=0 = (不存在)= = (二)形成概念 一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.而把正的平方根叫做a的算术平方根. 表达式为:若x2=a,那么x叫做a的平方根.记作. 例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根. (三)探索平方与开平方的关系: 给出几组具体的数据,由平方探知开平方与平方的互逆关系. (四)概念辨析 平方根与算术平方根的联系与区别 联系1.包含关系平方根包含算术平方根,算术平方根是平方根的一种. 2.只有非负数才有平方根和算术平方根. 3.0的平方根是0,算术平方根也是0. 区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根. 2.表示法不同:平方根表示为,而算术平方根表示为. 目的形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系. 效果由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠. 说明平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握. 第三环节:例题和新知巩固 (一)例题示范 求下列各数的平方根: (1)64;(2);(3) 0.0004;(4);(5) 11 解(1),,; (2),; (3),; (4),; (5) 目的:这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数. 效果:通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言. (二)思考提升 1.,的算术平方根是_____,的平方根是_____; 2., ,,=_______; 3.=, . (三)巩固练习 1.下列说法正确的是 ①②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8. 2.下列说法不正确的是( ) . A.0的平方根是0 B.的平方根是 C.非负数的平方根是互为相反数 D.一个正数的算术平方根一定大于这个数的相反数 3.已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是( ). A. a+1 B. C.+1 D. 4.为何值,有意义? 答 因为,所以 目的:围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解. 效果:学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节:课堂小结 内容:引导学生总结本课时的知识、方法. 目的:让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯. 效果:在老师的引导下学生自己总结本节课的知识、方法,如 平方根的概念 若,则x叫a的平方根, 平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根. 平方与开方之间的关系; 求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数. 第五环节:提高训练 内容:1.的小数部分为a,的小数部分为b,求的值. 2.已知实数a,b满足 ①若a,b为的两边,求第三边c的取值范围; ②若a,b为的两边,第三边c等于5,求的面积. 目的:安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理. 第六环节:作业布置 习题2.4 四、教学设计反思 本节课是八年级上册第二章《平方根》的第二课时.主要知识是平方根的学习和运用.教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整. (一)注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的.所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符.对此,在平方根的引入时,可多提一些具体的问题.如“9的算术平方根是3,也就是说,3的平方是9.还有其他的数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念.再让学生去讨论 一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平方根的概念,然后通过具体的求平方根的练习,巩固新学的概念. (二)鼓励学生进行探究和交流 本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流.如 把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性. (三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系.类比概念 “平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算. (四)根据学生实际,灵活使用教材 教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习.当然,选题要有层次,有梯度.老师们在进行教学时可以根据学生的实际情况作适当的取舍. (五)建议 根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学上册 第二章 实数 平方根教案 新版北师大版-新版北师大版初中八年级上册数学教案 八年 级数 上册 第二 平方根 教案 新版 北师大 初中 年级 数学教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:八年级数学上册 第二章 实数 2 平方根教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7444997.html
链接地址:https://www.zixin.com.cn/doc/7444997.html