高中数学集合复习教案.doc
《高中数学集合复习教案.doc》由会员分享,可在线阅读,更多相关《高中数学集合复习教案.doc(5页珍藏版)》请在咨信网上搜索。
【中学数学教案】 集合总复习 教学目的: 1.理解集合的概念,知道常用数集的概念及其记法,会判断一组对象是否构成集合。 2.理解元素与集合的“属于”关系,会判断某一个元素属于或不属于某一个集合,了解数集的记法,掌握元素的特征,理解列举法和描述法的意义。 3理解子集、真子集概念,会判断和证明两个集合包含关系,理解“⊂≠ ”、“⊆”的含义。 4.会判断简单集合的相等关系: (1)结合集合的图形表示,理解交集与并集的概念; (2)掌握交集和并集的表示法,会求两个集合的交集和并集。 5.理解交集与并集的概念,熟练掌握交集和并集的表示法,会求两个集合的交集和并集,掌握集合的交、并的性质。 教学重点: 1.集合的基本概念及表示方法。 2.交集和并集的概念,集合的交、并的性质。 3.子集的概念、真子集的概念。 教学难点: 1.运用集合的两种常用表示方法——列举法与描述法,正确表示。 2.元素与子集、属于与包含间区别、描述法给定集合的运算。 3.交集和并集的概念、符号之间的区别与联系。 4.集合的交、并的性质。 教学内容: 一、集合的有关概念: 1、集合的概念: (1)集合:集合是由一些确定的对象组成的一个整体,简称集。 (2)元素:组成集合的每一个对象叫做这个集合的元素。 ☆。 2、常用数集及记法: (1)非负整数集(自然数集):全体非负整数的集合。记作N。 (2)正整数集:非负整数集内排除0的集。记作N*或N+。 (3)整数集:全体整数的集合。记作Z。 (4)有理数集:全体有理数的集合。记作Q。 (5)实数集:全体实数的集合。记作R。 3.不含任何元素的集合叫空集,记作。 ☆注意:0和不同,0是一个数,可以作为一个集合的元素,而是一个集合。 二、集合的表示方法:列举法,描述法。 ☆用列举法表示集合时,元素不能重复,不能遗漏,不计顺序; ☆用描述法表示集合时,书写格式为:M={代表元素︱元素的特征性质}。 三、集合中元素的特性: (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。 (2)互异性:集合中的元素没有重复。 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)。 四、集合之间的关系: 1.子集: (1)定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A是集合B的子集,记作A⊆B(或B⊇A)。 这时我们也说集合A包含于集合B,或集合B包含集合A。 ☆如果集合A的元素中有一个不是集合B的元素,那么A肯定不是B的子集。 (2)真子集:为子集的特例,集合A是集合B的真子集必须满足:①A是B的子集;②至少有一个B中的元素不属于A,A≠B。 ☆A是B的子集有两种情况:①A是B的真子集;②A=B。 2.两个集合相等: 一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。 用式子表示:如果A⊆B,同时B⊆A,那么A=B。 ☆A=B是指A和B的的元素完全相同,判断集合A和B相等的方法有两种:①对有限集合,一般利用定义,观察A和B的元素是否完全相同,直接进行判断;②对无限集合,考察A⊆B且B⊆A是否成立。 五、集合的运算: 1.交集: 定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A和B的交集。 记作AB(读作“A交B”),即AB={x|xA,且xB}。 2.并集: 定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A和B的并集。 记作:AB(读作“A并B”),即AB ={x|xA,或xB}。 例1:用描述法表示下列集合: ①{1,4,7,10,13} ②{-2,-4,-6,-8,-10} 用列举法表示下列集合 ①{x∈N|x是15的约数} {1,3,5,15} ②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)} 取值范围是[ ] A.m<4 B.m>4 C.0<m<4 D.0≤m<4 可得0≤m<4.答 选D. 例3: 已知M={y|y=x2+1,x∈R},N={y|y=-x2+1,x∈R}则M∩N是[ ] A.{0,1} B.{(0,1)} C.{1} 分析 先考虑相关函数的值域. 解 ∵M={y|y≥1},N={y|y≤1}, ∴在数轴上易得M∩N={1}.选C. 例4: 设集合A={x|-5≤x<1},B={x|x≤2},则A∪B= [ ] A.{x|-5≤x<1} B.{x|-5≤x≤2} C.{x|x<1} D.{x|x≤2} 分析 画数轴表示,B)。答 D。 例5 下列四个推理:①;②; 为 [ ] A.1 B.2 C.3 D.4 分析 根据交集、并集的定义,①是错误的推理.答 选C。 例6: 集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B=________。 分析 A∩B即为两条直线x+y=0与x-y=2的交点集合。 所以A∩B={(1,-1)}. 例7:设A={x∈R|f(x)=0},B={x∈R|g(x)=0},,,则[ ]。 A.C=A∪(UR) B.C=A∩(UB) C.C=A∪B D.C=(UA)∩B 分析 依据分式的意义及交集、补集的概念逐步化归 ={x∈R|f(x)=0且g(x)≠0}={x∈R|f(x)=0}∩{x∈R|g(x)≠0} =A∩(UB).答 选B.说明:本题把分式的意义与集合相结合. 例8 集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A∪B有________个元素. 分析 一种方法,由集合A∩B含有3个元素知,A,B仅有3个元素相同,根据集合元素的互异性,集合A∪B的元素个数为10+8-3=15. 另一种方法,画图1-10观察可得.答 填15. 例9 已知全集U={x|x取不大于30的质数},A,B是U的两个子集,且A∩(UB)={5,13,23},(UA)∩B={11,19,29},(UA)∩(UB)={3,7}求A,B. 分析 由于涉及的集合个数,信息较多,所以可以通过画图1-11直观地求解. 解 ∵U={2,3,5,7,11,13,17,19,23,29} 用图形表示出A∩(UB),(UA)∩B及(UA)∩(UB)得 U(A∪B)={3,7},A∩B={2,17}, 所以 A={2,5,13,17,23}, B={2,11,17,19,29}. 说明:对于比较复杂的集合运算,可借助图形. 例10 设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B. 分析 欲求A∪B,需根据A∩B={9}列出关于x的方程,求出x,从而确定A、B,但若将A、B中元素为9的情况一起考虑,头绪太多了,因此,宜先考虑集合A,再将所得值代入检验. 解 由9∈A可得x2=9或2x-1=9,解得x=±3或5. 当x=3时,A={9,5,-4},B={-2,-2,9},B中元素违反互异性,故x=3应舍去; 当x=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,此时A∪B={-7,-4,-8,4,9} 当x=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},这与A∩B={9}矛盾.故x=5应舍去.从而可得x=-3,且A∪B={-8,-4,4,-7,9}. 说明:本题解法中体现了分类讨论思想,这在高中数学中是非常重要的. 例11 设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∩B=B,求a的值. 需要对A的子集进行分类讨论. 设0∈B,则a2-1=0,a=±1,当a=-1时,B={0}符合题意;当a=1时,B={0,-4}也符合题意. 设-4∈B,则a=1或a=7,当a=7时,B={-4,-12}不符合题意. <-1. 综上所述,a的取值范围是a≤-1或a=1. 例12 (1998年全国高考题) 设集合M={x|-1≤x<2},N={x|x[ ] A.(-∞,2] B.[-1,+∞) C.(-1,+∞) D.[-1,2] 分析 分别将集合M、N用数轴表示,可知:k≥-1时,M∩答 选B.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 集合 复习 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文