概率论与数理统计课后答案_北邮版_(第三章) 2.doc
《概率论与数理统计课后答案_北邮版_(第三章) 2.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计课后答案_北邮版_(第三章) 2.doc(18页珍藏版)》请在咨信网上搜索。
习题三 1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律. 【解】X和Y的联合分布律如表: X Y 0 1 2 3 1 0 0 3 0 0 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律. 【解】X和Y的联合分布律如表: X Y 0 1 2 3 0 0 0 1 0 2 P(0黑,2红,2白)= 0 3.设二维随机变量(X,Y)的联合分布函数为 F(x,y)= 求二维随机变量(X,Y)在长方形域内的概率. 【解】如图 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= 求:(1) 常数A; (2) 随机变量(X,Y)的分布函数; (3) P{0≤X<1,0≤Y<2}. 【解】(1) 由 得 A=12 (2) 由定义,有 (3) 5.设随机变量(X,Y)的概率密度为 f(x,y)= (1) 确定常数k; (2) 求P{X<1,Y<3}; (3) 求P{X<1.5}; (4) 求P{X+Y≤4}. 【解】(1) 由性质有 故 (2) (3) (4) 题5图 6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为 fY(y)= 求:(1) X与Y的联合分布密度;(2) P{Y≤X}. 题6图 【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为 而 所以 (2) 7.设二维随机变量(X,Y)的联合分布函数为 F(x,y)= 求(X,Y)的联合分布密度. 【解】 8.设二维随机变量(X,Y)的概率密度为 f(x,y)= 求边缘概率密度. 【解】 题8图 题9图 9.设二维随机变量(X,Y)的概率密度为 f(x,y)= 求边缘概率密度. 【解】 题10图 10.设二维随机变量(X,Y)的概率密度为 f(x,y)= (1) 试确定常数c; (2) 求边缘概率密度. 【解】(1) 得. (2) 11.设随机变量(X,Y)的概率密度为 f(x,y)= 求条件概率密度fY|X(y|x),fX|Y(x|y). 题11图 【解】 所以 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y. (1) 求X与Y的联合概率分布; (2) X与Y是否相互独立? 【解】(1) X与Y的联合分布律如下表 Y X 3 4 5 1 2 0 3 0 0 (2) 因 故X与Y不独立 13.设二维随机变量(X,Y)的联合分布律为 X Y 2 5 8 0.4 0.8 0.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X和关于Y的边缘分布; (2) X与Y是否相互独立? 【解】(1)X和Y的边缘分布如下表 X Y 2 5 8 P{Y=yi} 0.4 0.15 0.30 0.35 0.8 0.8 0.05 0.12 0.03 0.2 0.2 0.42 0.38 (2) 因 故X与Y不独立. 14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为 fY(y)= (1)求X和Y的联合概率密度; (2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率. 【解】(1) 因 故 题14图 (2) 方程有实根的条件是 故 X2≥Y, 从而方程有实根的概率为: 15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为 f(x)= 求Z=X/Y的概率密度. 【解】如图,Z的分布函数 (1) 当z≤0时, (2) 当0<z<1时,(这时当x=1000时,y=)(如图a) 题15图 (3) 当z≥1时,(这时当y=103时,x=103z)(如图b) 即 故 16.设某种型号的电子管的寿命(以小时计)近似地服从N(160,202)分布.随机地选取4 只,求其中没有一只寿命小于180h的概率. 【解】设这四只寿命为Xi(i=1,2,3,4),则Xi~N(160,202), 从而 17.设X,Y是相互独立的随机变量,其分布律分别为 P{X=k}=p(k),k=0,1,2,…, P{Y=r}=q(r),r=0,1,2,…. 证明随机变量Z=X+Y的分布律为 P{Z=i}=,i=0,1,2,…. 【证明】因X和Y所有可能值都是非负整数, 所以 于是 18.设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布.证明Z=X+Y服从参数为2n,p的二项分布. 【证明】方法一:X+Y可能取值为0,1,2,…,2n. 方法二:设μ1,μ2,…,μn;μ1′,μ2′,…,μn′均服从两点分布(参数为p),则 X=μ1+μ2+…+μn,Y=μ1′+μ2′+…+μn′, X+Y=μ1+μ2+…+μn+μ1′+μ2′+…+μn′, 所以,X+Y服从参数为(2n,p)的二项分布. 19.设随机变量(X,Y)的分布律为 X Y 0 1 2 3 4 5 0 1 2 3 0 0.01 0.03 0.05 0.07 0.09 0.01 0.02 0.04 0.05 0.06 0.08 0.01 0.03 0.05 0.05 0.05 0.06 0.01 0.02 0.04 0.06 0.06 0.05 (1) 求P{X=2|Y=2},P{Y=3|X=0}; (2) 求V=max(X,Y)的分布律; (3) 求U=min(X,Y)的分布律; (4) 求W=X+Y的分布律. 【解】(1) (2) 所以V的分布律为 V=max(X,Y) 0 1 2 3 4 5 P 0 0.04 0.16 0.28 0.24 0.28 (3) 于是 U=min(X,Y) 0 1 2 3 P 0.28 0.30 0.25 0.17 (4)类似上述过程,有 W=X+Y 0 1 2 3 4 5 6 7 8 P 0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布. (1) 求P{Y>0|Y>X}; (2) 设M=max{X,Y},求P{M>0}. 题20图 【解】因(X,Y)的联合概率密度为 (1) (2) 21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少? 题21图 【解】区域D的面积为 (X,Y)的联合密度函数为 (X,Y)关于X的边缘密度函数为 所以 22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处. X Y y1 y2 y3 P{X=xi}=pi x1 x2 1/8 1/8 P{Y=yj}=pj 1/6 1 【解】因, 故 从而 而X与Y独立,故, 从而 即: 又 即 从而 同理 又,故. 同理 从而 故 Y X 1 23.设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机变量(X,Y)的概率分布. 【解】(1) . (2) 24.设随机变量X和Y独立,其中X的概率分布为X~,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u). 【解】设F(y)是Y的分布函数,则由全概率公式,知U=X+Y的分布函数为 由于X和Y独立,可见 由此,得U的概率密度为 25. 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,求P{max{X,Y}≤1}. 解:因为随即变量服从[0,3]上的均匀分布,于是有 因为X,Y相互独立,所以 推得 . 26. 设二维随机变量(X,Y)的概率分布为 X Y -1 0 1 -1 0 1 a 0 0.2 0.1 b 0.2 0 0.1 c 其中a,b,c为常数,且X的数学期望E(X)= -0.2,P{Y≤0|X≤0}=0.5,记Z=X+Y.求: (1) a,b,c的值; (2) Z的概率分布; (3) P{X=Z}. 解 (1) 由概率分布的性质知, a+b+c+0.6=1 即 a+b+c = 0.4. 由,可得 . 再由 , 得 . 解以上关于a,b,c的三个方程得 . (2) Z的可能取值为-2,-1,0,1,2, , , , , , 即Z的概率分布为 Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1 (3) . 27. 设随机变量X,Y独立同分布,且X的分布函数为F(x),求Z=max{X,Y}的分布函数. 解:因为X,Y独立同分布,所以FX(z)=FY(z),则FZ(z)=P{Z≤z}=P{X≤z,Y≤z}=P{x≤z}·P{Y≤z}=[F(z)]2. 28.设随机变量X与Y相互独立,X的概率分布为 Y的概率密度为记Z=X+Y. (1)求 (2)求Z的概率密度 分析 题(1)可用条件概率的公式求解.题(2)可先求Z的分布函数,再求导得密度函数. 解(1) (2) 29.设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,求在Y=y的条件下,X的条件概率密度fX|Y(x|y). 解:由第四章第三节所证可知,二维正态分布的不相关与独立性等价,所以f(x,y)= fX (x) ·FY(y),由本章所讨论知,. 30.设二维随机变量(X,Y)的概率密度为 (1)求 (2)求Z=X+Y的概率密度. 分析 已知(X,Y)的联合密度函数,可用联合密度函数的性质∈ 解(1); Z=X+Y的概率密度函数可用先求Z的分布函数再求导的方法或直接套公式求解. 解 (1) (2) 其中 当时, 当时, 当时, 即Z的概率密度为 18- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论与数理统计课后答案_北邮版_第三章 概率论 数理统计 课后 答案 北邮版 第三
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文