建筑力学6截面图形的几何性质.doc
《建筑力学6截面图形的几何性质.doc》由会员分享,可在线阅读,更多相关《建筑力学6截面图形的几何性质.doc(10页珍藏版)》请在咨信网上搜索。
截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积,定义它对任意轴的一次矩为它对该轴的静矩,即 y x 整个图形对y、z轴的静矩分别为 ×C y (I-1) 0 A x 2.形心与静矩关系 图I-1 设平面图形形心C的坐标为 则 0 , (I-2) 推论1 如果y轴通过形心(即),则静矩;同理,如果x轴通过形心(即),则静矩;反之也成立。 推论2 如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为的简单图形组成,且一直各族图形的形心坐标分别为,则图形对y轴和x轴的静矩分别为 (I-3) 截面图形的形心坐标为 , (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩的单位为。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩(极惯性矩、对y轴和x轴的惯性矩) 定义 设任意形状的截面图形的面积为A(图I-3),则图形对O点的极惯性矩定义为 (I-5) 图形对y轴和x轴的惯性矩分别定义为 , (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为。 (3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。 (4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原点的任意一对坐标轴的轴惯性矩之和,即 (I-7) (5) 组合图形(图I-2)对某一点的极惯性矩或某一轴的轴惯性矩,分别等于各组成部分图形对同一点的极惯性矩或同一轴惯性矩之和,即 , , (I-8) y y x dA y 0 x 0 x 图I-2 图I-3 2. 惯性积 定义 设任意形状的截面图形的面积为A(图I-3),则图形对y轴和x轴的惯性积定义为 (I-9) 惯性积的特征 (1) 界面图形的惯性积是对相互垂直的某一对坐标轴定义的。 (2) 惯性积的单位为。 (3) 惯性积的数值可正可负,也可能等于零。若一对坐标周中有一轴为图形的对称轴,则图形对这一对称轴的惯性积必等于零。但图形对某一对坐标轴的惯性积为零,这一对坐标轴重且不一定有图形的对称轴。 (4) 组合图形对某一对坐标轴的惯性积,等于各组分图形对同一坐标轴的惯性积之和,即 (I-10) 3. 惯性半径(回转半径) 定义: 任意形状的截面图形的面积为A(图I-3),则图形对y轴和x轴的惯性半径分别定义为 , (I-11) 惯性半径的特征 (1) 惯性半径是对某一坐标轴定义的。 (2) 惯性半径的单位为m。 (3) 惯性半径的数值恒取正。 (三).惯性矩和惯性积的平行移轴公式 平行移轴公式 (I-12) (I-13) 平行移轴公式的特征 (1)意形状界面光图形的面积为A(图(I-4); 轴为图形的形心轴;x,y轴为分别与形心轴相距为a和b的平行轴。 (2)两对平行轴之间的距离a和b的正负,可任意选取坐标轴x,y或形心为参考轴加以确定。 (3)在所有相互平行的坐标轴中,图形对形心轴的惯性矩为最小,但图形对形心轴的惯性积不一定是最小。 y dA b C a 0 x 图I-4 (四)、惯性矩和惯性积的转轴公式.主惯性轴主惯性矩 转轴公式 转轴公式的特征 (1) 角度的正负号,从原坐标轴x,y转至新坐标轴,以逆时针转向者为正(图5)。 (2) 原点O为截面图形平面内的任意点,转轴公式与图形的形心无关。原、新坐标轴的原点须相同。 (3) 图形对通过同一坐标原点任意一对相互垂直坐标轴的两个轴惯性矩之和为常量,等于图形对原点的极惯性矩,即 主惯性轴、主惯性矩 任意形状截面图形对以某一点O为坐标原点的坐标轴、的惯性积为零(),则坐标轴、称为图形通过点O的主惯性轴(图6)。截面图形对主惯性轴的惯性矩,称为主惯性矩。 主惯性轴、主惯性矩的确定 (1) 对于某一点O,若能找到通过点O的图形的对称轴,则以点O为坐标原点,并包含对称轴的一对坐标轴,即为图形通过点O的一对主惯性轴。对于具有对称轴的图形(或组合图形),往往已知其通过自身形心轴的惯性矩。于是,图形对通过点O的主惯性轴的主惯性矩,一般即可由平行移轴公式直接计算。 (2) 若通过某一点O没有图形的对称轴,则可以点O为坐标原点,任作一坐标轴x,y为参考轴,并求出图形对参考轴x,y的惯性矩和惯性积。于是,图形通过点O的一对主惯性轴方位及主惯性矩分别为 (I-16) (I-17) 主惯性轴、主惯性矩的特征 (1)图形通过某一点O至少具有一对主惯性轴,而主惯性矩是图形对通过同一点O所有轴的惯性矩中最大和最小。 (2)主惯性轴的方位角,从参考轴x,y量起,以逆时针转向为正。 (3)若图形对一点O为坐标原点的两主惯性矩相等,则通过点O的所有轴均为主惯性轴,且所有主惯性矩都相同。 (4)以截面图形形心为坐标原点的主惯性轴,称为形心主惯性轴。图形对一对形心主惯性轴的惯性矩,称为形心主惯性矩。 y y 0 x 0 x A 图I-5 图I-6 二.典型例题分析 例I-a 试计算图示三角形截面对于与其底边重合的x轴的静矩。 解:计算此截面对于x轴的静矩时,可以去平行于x轴的狭长条(见图)作为面积元素(因其上各点的y坐标相等),即。由相似三角形关系,可知: ,因此有。将其代入公式(I-1)的第二式,即得 y dy h b(y) y 0 x b 例题I-a图 解题指导:此题为积分法求图形对坐标轴的静矩。 例I-2 试确定图示Ⅰ-b截面形心C的位置 解:将截面分为І、П两个矩形。为计算方便,取x轴和y轴分别与界面的底边和左边缘重合(见图)。先计算每一个矩形的面积和形心坐标()如下: 矩形І , 矩形П , 将其代入公式(I-4),即得截面形心C的坐标为 І Ⅱ 10 解题指导: 此题是将不规则图形划分为两个规则图形利用已有的规则图形的面积和形心,计算不规则图形的形心。 y 10 120 · · x 80 图Ⅰ-b 例I-3 试求图I-c所示截面对于对称轴x轴的惯性矩 解:此截面可以看作有一个矩形和两个半圆形组成。设矩形对于x轴的惯性矩为,每一个半圆形对于x轴的惯性矩为,则由公式(I-11)的第一式可知,所给截面的惯性矩: (1) 矩形对于x轴的惯性矩为: (2) 半圆形对于x轴的惯性矩可以利用平行移轴公式求得。为此,先求出每个半圆形对于与x轴平行的形心轴(图b)的惯性矩。已知半圆形对于其底边的惯性矩为圆形对其直径轴(图b)的惯性据之半,即。而半圆形的面积为,其形心到底边的距离为(图b)。故由平行移轴公式(I-10a),可以求出每个半圆形对其自身形心轴的惯性矩为: (3) 由图a可知,半圆形形心到x轴距离为,故在由平行移轴公式,求得每个半圆形对于x轴的惯性矩为: 将d=80mm、 a=100mm (图a)代入式(4),即得 mm4 将求得的和代入式(1),便得 mm4 解题指导: 此题是将不规则图形划分为若干个规则图形,利用已有的规则图形的面积、形心及对自身形心轴的惯性矩,结合平行移轴公式计算组合截面图形对组合截面形心的惯性矩。 图I-c 40 a=100 x 图I-c 40 d=80 xc 100 d- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑 力学 截面 图形 几何 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文