备战高考数学――名师精编预测题跟踪演练详解系列5.doc
《备战高考数学――名师精编预测题跟踪演练详解系列5.doc》由会员分享,可在线阅读,更多相关《备战高考数学――名师精编预测题跟踪演练详解系列5.doc(10页珍藏版)》请在咨信网上搜索。
备战09高考数学――名师精编预测题跟踪演练详解系列五 1.(本小题满分14分) 已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足 (Ⅰ)设为点P的横坐标,证明; (Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=若存在,求∠F1MF2 的正切值;若不存在,请说明理由. 本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P的坐标为 由P在椭圆上,得 由,所以 ………………………3分 证法二:设点P的坐标为记 则 由 证法三:设点P的坐标为椭圆的左准线方程为 由椭圆第二定义得,即 由,所以…………………………3分 (Ⅱ)解法一:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上. 当|时,由,得. 又,所以T为线段F2Q的中点. 在△QF1F2中,,所以有 综上所述,点T的轨迹C的方程是…………………………7分 解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上. 当|时,由,得. 又,所以T为线段F2Q的中点. 设点Q的坐标为(),则 因此 ① 由得 ② 将①代入②,可得 综上所述,点T的轨迹C的方程是……………………7分 ③ ④ (Ⅲ)解法一:C上存在点M()使S=的充要条件是 由③得,由④得 所以,当时,存在点M,使S=; 当时,不存在满足条件的点M.………………………11分 当时,, 由, , ,得 解法二:C上存在点M()使S=的充要条件是 ③ ④ 由④得 上式代入③得 于是,当时,存在点M,使S=; 当时,不存在满足条件的点M.………………………11分 当时,记, 由知,所以…………14分 2.(本小题满分12分) 函数在区间(0,+∞)内可导,导函数是减函数,且 设 是曲线在点()得的切线方程,并设函数 (Ⅰ)用、、表示m; (Ⅱ)证明:当; (Ⅲ)若关于的不等式上恒成立,其中a、b为实数, 求b的取值范围及a与b所满足的关系. 本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:…………………………………………2分 (Ⅱ)证明:令 因为递减,所以递增,因此,当; 当.所以是唯一的极值点,且是极小值点,可知的 最小值为0,因此即…………………………6分 (Ⅲ)解法一:,是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为 于是的充要条件是…………………………10分 综上,不等式对任意成立的充要条件是 ① 显然,存在a、b使①式成立的充要条件是:不等式 ② 有解、解不等式②得 ③ 因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分 (Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 ………………………………………………………………8分 令,于是对任意成立的充要条件是 由 当时当时,,所以,当时,取最小值.因此成立的充要条件是,即………………10分 综上,不等式对任意成立的充要条件是 ① 显然,存在a、b使①式成立的充要条件是:不等式 ② 有解、解不等式②得 因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分 3.(本小题满分12分) 已知数列的首项前项和为,且 (I)证明数列是等比数列; (II)令,求函数在点处的导数并比较与的大小. 解:由已知可得两式相减得 即从而当时所以又所以从而 故总有,又从而即数列是等比数列; (II)由(I)知 因为所以 从而= =-= 由上-= =12① 当时,①式=0所以; 当时,①式=-12所以 当时, 又 所以即①从而 4.(本小题满分14分) 已知动圆过定点,且与直线相切,其中. (I)求动圆圆心的轨迹的方程; (II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标. 解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为; (II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知① (1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点 (2)当时,由,得== 将①式代入上式整理化简可得:,所以, 此时,直线的方程可表示为即 所以直线恒过定点 所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 5.(本小题满分12分) 已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点. (Ⅰ)求双曲线C2的方程; (Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围. 解:(Ⅰ)设双曲线C2的方程为,则 故C2的方程为 (II)将 由直线l与椭圆C1恒有两个不同的交点得 即 ① . 由直线l与双曲线C2恒有两个不同的交点A,B得 解此不等式得 ③ 由①、②、③得 故k的取值范围为 6.(本小题满分12分) 数列{an}满足. (Ⅰ)用数学归纳法证明:; (Ⅱ)已知不等式,其中无理数e=2.71828…. (Ⅰ)证明:(1)当n=2时,,不等式成立. (2)假设当时不等式成立,即 那么. 这就是说,当时不等式成立. 根据(1)、(2)可知:成立. (Ⅱ)证法一: 由递推公式及(Ⅰ)的结论有 两边取对数并利用已知不等式得 故 上式从1到求和可得 即 (Ⅱ)证法二: 由数学归纳法易证成立,故 令 取对数并利用已知不等式得 上式从2到n求和得 因 故成立. 7.(本小题满分12分) 已知数列 (1)证明 (2)求数列的通项公式an. 解:(1)方法一 用数学归纳法证明: 1°当n=1时, ∴,命题正确. 2°假设n=k时有 则 而 又 ∴时命题正确. 由1°、2°知,对一切n∈N时有 方法二:用数学归纳法证明: 1°当n=1时,∴; 2°假设n=k时有成立, 令,在[0,2]上单调递增,所以由假设 有:即 也即当n=k+1时 成立,所以对一切 (2)下面来求数列的通项:所以 , 又bn=-1,所以- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 高考 数学 名师 精编 预测 跟踪 演练 详解 系列
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文