广东省惠东县教育教学研究室九年级数学上册 24.2 与圆有关的位置关系(第2课时)教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
《广东省惠东县教育教学研究室九年级数学上册 24.2 与圆有关的位置关系(第2课时)教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc》由会员分享,可在线阅读,更多相关《广东省惠东县教育教学研究室九年级数学上册 24.2 与圆有关的位置关系(第2课时)教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc(9页珍藏版)》请在咨信网上搜索。
与圆有关的位置关系 教学内容 1.直线和圆相交、割线;直线和圆相切、圆的切线、切点;直线和圆没有公共点、直线和圆相离等概念. 2.设⊙O的半径为r,直线L到圆心O的距离为d 直线L和⊙O相交d<r;直线和⊙O相切d=r;直线L和⊙O相离d>r. 3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 4.切线的性质定理:圆的切线垂直于过切点的半径. 5.应用以上的内容解答题目. 教学目标 (1)了解直线和圆的位置关系的有关概念. (2)理解设⊙O的半径为r,直线L到圆心O的距离为d,则有: 直线L和⊙O相交d<r;直线L和⊙O相切d=r;直线L和⊙O相离d>r. (3)理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题. 复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r直线和圆相切,讲授切线的判定定理和性质定理. 重难点、关键 1.重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目. 2.难点与关键:由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价. 教学过程 一、复习引入 (老师口答,学生口答,老师并在黑板上板书)同学们,我们前一节课已经学到点和圆的位置关系.设⊙O的半径为r,点P到圆心的距离OP=d, 则有:点P在圆外d>r,如图(a)所示; 点P在圆上d=r,如图(b)所示; 点P在圆内d<r,如图(c)所示. 二、探索新知 前面我们讲了点和圆有这样的位置关系,如果这个点P改为直线L呢?它是否和圆还有这三种的关系呢? (学生活动)固定一个圆,把三角尺的边缘运动,如果把这个边缘看成一条直线,那么这条直线和圆有几种位置关系? (老师口答,学生口答)直线和圆有三种位置关系:相交、相切和相离. (老师板书)如图所示: 如图(a),直线L和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线. 如图(b),直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点. 如图(c),直线和圆没有公共点,这时我们说这条直线和圆相离. 我们知道,点到直线L的距离是这点向直线作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到L的距离的三种情况? (学生分组活动):设⊙O的半径为r,圆心到直线L的距离为d,请模仿点和圆的位置关系,总结出什么结论? 老师点评直线L和⊙O相交d<r,如图(a)所示; 直线L和⊙O相切d=r,如图(b)所示; 直线L和⊙O相离d>r,如图(c)所示. 因为d=r直线L和⊙O相切,这里的d是圆心O到直线L的距离,即垂直,并由d=r就可得到L经过半径r的外端,即半径OA的A点,因此,很明显的,我们可以得到切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. (学生分组讨论):根据上面的判定定理,如果你要证明一条直线是⊙O的切线,你应该如何证明? (老师点评):应分为两步:(1)说明这个点是圆上的点,(2)过这点的半径垂直于直线. 例1.如图,已知Rt△ABC的斜边AB=8cm,AC=4cm. (1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么? (2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系? 分析:(1)根据切线的判定定理可知,要使直线AB与⊙C相切,那么这条半径应垂直于直线AB,并且C点到垂足的长就是半径,所以只要求出如图所示的CD即可. (2)用d和r的关系进行判定,或借助图形进行判定. 解:(1)如图24-54:过C作CD⊥AB,垂足为D. 在Rt△ABC中 BC== ∴CD==2 因此,当半径为2cm时,AB与⊙C相切. 理由是:直线AB为⊙C的半径CD的外端并且CD⊥AB,所以AB是⊙C的切线. (2)由(1)可知,圆心C到直线AB的距离d=2cm,所以 当r=2时,d>r,⊙C与直线AB相离; 当r=4时,d<r,⊙C与直线AB相交. 刚才的判定定理也好,或者例1也好,都是不知道直线是切线,而判定切线,反之,如果知道这条直线是切线呢?有什么性质定理呢? 实际上,如图,CD是切线,A是切点,连结AO与⊙O于B,那么AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°. 因此,我们有切线的性质定理: 圆的切线垂直于过切点的半径. 三、巩固练习 教材P102 练习,P103 练习. 四、应用拓展 例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A. (1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相切,请说明理由. (2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径. 分析:(1)要说明CD是否是⊙O的切线,只要说明OC是否垂直于CD,垂足为C,因为C点已在圆上. 由已知易得:∠A=30°,又由∠DCB=∠A=30°得:BC=BD=10 解:(1)CD与⊙O相切 理由:①C点在⊙O上(已知) ②∵AB是直径 ∴∠ACB=90°,即∠ACO+∠OCB=90° ∵∠A=∠OCA且∠DCB=∠A ∴∠OCA=∠DCB ∴∠OCD=90° 综上:CD是⊙O的切线. (2)在Rt△OCD中,∠D=30° ∴∠COD=60° ∴∠A=30° ∴∠BCD=30° ∴BC=BD=10 ∴AB=20,∴r=10 答:(1)CD是⊙O的切线,(2)⊙O的半径是10. 五、归纳小结(学生归纳,总结发言老师点评) 本节课应掌握: 1.直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆相离等概念. 2.设⊙O的半径为r,直线L到圆心O的距离为d则有: 直线L和⊙O相交d<r 直线L和⊙O相切d=r 直线L和⊙O相离d>r 3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 4.切线的性质定理,圆的切线垂直于过切点的半径. 5.应用上面的知识解决实际问题. 六、布置作业 1.教材P110 复习巩固4、5. 2.选用课时作业设计. 第二课时作业设计 一、选择题. 1.如图,AB与⊙O切于点C,OA=OB,若⊙O的直径为8cm,AB=10cm,那么OA的长是( ) A. B. 2.下列说法正确的是( ) A.与圆有公共点的直线是圆的切线. B.和圆心距离等于圆的半径的直线是圆的切线; C.垂直于圆的半径的直线是圆的切线; D.过圆的半径的外端的直线是圆的切线 3.已知⊙O分别与△ABC的BC边,AB的延长线,AC的延长线相切,则∠BOC等于( ) A.(∠B+∠C) B.90°+∠A C.90°-∠A D.180°-∠A 二、填空题 1.如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D点,若AB=10,AC=8,则DC长为________. 2.如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,弦AB与PO交于C,⊙O半径为1,PO=2,则PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________. 3.设I是△ABC的内心,O是△ABC的外心,∠A=80°,则∠BIC=________,∠BOC=________. 三、综合提高题 1.如图,P为⊙O外一点,PA切⊙O于点A,过点P的任一直线交⊙O于B、C,连结AB、AC,连PO交⊙O于D、E. (1)求证:∠PAB=∠C. (2)如果PA2=PD·PE,那么当PA=2,PD=1时,求⊙O的半径. 2.设a、b、c分别为△ABC中∠A、∠B、∠C的对边,面积为S,则内切圆半径r=, 其中P=(a+b+c);(2)Rt△ABC中,∠C=90°,则r=(a+b-c) 3.如图1,平面直角坐标系中,⊙O1与x轴相切于点A(-2,0),与y轴交于B、C两点,O1B的延长线交x轴于点D(,0),连结AB. (1)求证:∠ABO=∠ABO; (2)设E为优弧的中点,连结AC、BE交于点F,请你探求BE·BF的值. (3)如图2,过A、B两点作⊙O2与y轴的正半轴交于点M,与BD的延长线交于点N,当⊙O2的大小变化时,给出下列两个结论. ①BM-BN的值不变;②BM+BN的值不变,其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值. (友情提示:如图3,如果DE∥BC,那么) (1) (2) (3) 答案: 一、1.A 2.B 3.C 二、1.4 2. 120° 3.130° 160° 三、1.(1)提示:作直径AF,连BF,如右图所示. (2)由已知PA2=PD·PE,可得⊙O的半径为. 2.(1)设I为△ABC内心,内切圆半径为r, 则S△ABC=AB·r+BC·r+AC·r,则r=; (2)设内切圆与各边切于D、E、F,连结ID、IE, 如图,则ID⊥AC,IE⊥BC,又∠C=90°,ID=IE, ∴DIEC为正方形,∴CE=CD=r, ∴AD=AF=b-r,BE=BF=a-r,∴b-r+a-r=c,∴r=(a+b-c). 3.(1)证明:连结O1A,则O1A⊥OA,∴O1A∥OB,∴∠O1AB=∠ABO, 又∵O1A=O1B,∴∠O1AB=∠O1BA,∴∠ABO1=∠ABO (2)连结CE,∵O1A∥OB,∴, 设DB=2x,则O1D=5x,∴O1A=O1B=5x-2x=3x, 在Rt△DAO1中,(3x)2+()2=(5x)2,∴x=, ∴O1A=O1B=,OB=1, ∵OA是⊙O1的切线,∴OA2=OB·OC,∴OC=4,BC=3,AB=, ∵E为优弧AC的中点,∴∠ABF=∠EBC, ∵∠BAF=∠E,∴△ABF≌△EBC,∴, ∴BE·BF=AB·BC=3. (3)解:①BM-BN的值不变. 证明:在MB上取一点G,使MG=BN,连结AM、AN、AG、MN, ∵∠ABO=∠ABO,∠ABO=∠AMN,∠ABO=∠ANM, ∴∠AMN=∠ANM,∴AM=AN, ∵∠AMG=∠ANB,MG=BN, ∴△AMG≌△ANB,∴AG=AB, ∵AD⊥BG,∴BG=2BO=2, ∴BM-BN=BG=2其值不变.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省惠东县教育教学研究室九年级数学上册 24.2 与圆有关的位置关系第2课时教案 新版新人教版-新版新人教版初中九年级上册数学教案 广东省 惠东县 教育 教学 研究室 九年级 数学 上册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:广东省惠东县教育教学研究室九年级数学上册 24.2 与圆有关的位置关系(第2课时)教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc
链接地址:https://www.zixin.com.cn/doc/7418724.html
链接地址:https://www.zixin.com.cn/doc/7418724.html