八年级数学下册 20.3矩形 菱形 正方形教案 沪科版.doc
《八年级数学下册 20.3矩形 菱形 正方形教案 沪科版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册 20.3矩形 菱形 正方形教案 沪科版.doc(16页珍藏版)》请在咨信网上搜索。
20.3矩形、菱形、正方形 《矩形》 一、教材分析: (一) 教材的地位和作用: 本课要研究的是矩形的概念及性质和判定,是在学生已经学过四边形、平行四边形的概念及性质和判定的基础上进行的,是这一章的重点内容之一。因为矩形是特殊的平行四边形,而后继课要学的正方形又是特殊的矩形,所以它既是前面所学知识的应用,又是后面学习正方形的基础,具有承上启下的作用。 另外,本节课的内容还渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析、归纳、总结的能力,因此,这节课无论在知识上,还是在对学生能力培养上都起着非常重要的作用。 (二)教学目标: 在学生已有的认知基础上,依据课程标准,结合本课在教材中的地位、作用,确定本节课的教学目标为: 1、知识目标: (1)知道什么是矩形 (2)理解矩形与平行四边形的关系 (3)能说出矩形的性质及推论 (4)掌握矩形的判定方法 (5)能综合运用矩形的知识解决有关问题 2、能力目标: (1)会运用矩形的性质及推论进行有关的论证和计算 (2)会运用矩形的判定定理解决有关问题 (2)会观察、会比较、会分析、会归纳 3、德育目标:初步具有把感性认识上升到理性认识的辩证唯物主义观点。 4、情感目标:养成有良好的学习习惯,有浓厚的学习兴趣。 (三)、教学重点、难点、关键及依据: 重点:矩形的概念、性质和判定定理 难点:矩形与平行四边形的关系 关键:加强概念教学是突破难点的关键 依据:本课在教材中的地位和作用及教学目标和学生的实际情况。 二、教学方法和手段: (一)教学方法:根据本课的内容和初二学生的特点以及目标教学的要求,采用边启发、边分析、边推理,层层设疑,讲练结合的要求。通过演示平行四边形模型,激发学生的学习兴趣。教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”使能力得到锻炼。 (二)教学手段:为提高课堂效率和质量,借助于多媒体信息技术进行教学。 (三)教具:三角板,平行四边形模型,多媒体教学设备。 三、教材处理: (一)学生状况分析: 1、知识方面:学生已掌握了四边形及平行四边形的概念、性质等知识。 2、方法方面:学生已积累了学习特殊四边形性质的方法,即按“角、边、对角线”的思路进行学习。 3、思维方面:学生的思维还依赖于具体、形象、易模仿的特点,因此逻辑思维能力需要加强。 4、对策: (1)注意问题情境的教学。 (2)使用启发诱导的方法。 (3)贯彻循序渐进的原则。 (二)教材处理:基本按照教材的意图讲授,适当补充练习 四、教学过程及设计: 第一课时 (一)用运动方式探索矩形的概念及性质 1.复习平行四边形的有关概念及边、角、对角线方面的性质. 2.复习平行四边形和四边形的关系. 3.用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系. 分析: (1)矩形的形成过程是平行四边形的一个角由量变到质变的变化过程. (2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的平行四边形是矩形”来定义矩形. (3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性). (4)从边、角、对角线方面,让学生观察或度量猜想矩形的特殊性质. ①边:对边与平行四边形性质相同,邻边互相垂直(与性质定理1等价). ②角:四个角是直角(性质定理 1). ③对角钱:相等且互相平分(性质定理2). 4.证明矩形的两条性质定理及推论. 引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质定理及推论.指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质. (二)应用举例 例1已知:如下图,矩形 ABCD,AB长8 cm ,对角线比 AD边长4 cm.求 AD的长及A到BD的距离AE的长. 分析: (1)矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,在此可以让学生作一个系统的复习,在直角三角形中, 斜边大于直角边 边: 勾股定理 斜边中线等于斜边的一半 角:两锐角互余. 边角关系:30°角所对的直角边等于斜边的一半。 (2)利用方程的思想,解决直角三角形中的计算。设AD=xcm, 则对角线长(x+4)cm, 由题意,x2+82=(x+4)2.解得x=6. (3)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及 斜边上的高的一个基本关系式: AE×DB= AD×AB,解得 AE= 4.8cm. 例 2如图(a),在矩形 ABCD中,两条对角线交于点 O,∠AOD= 120°, AB= 4.求:(1)矩形对角线长;(2)BC边的长; (3)若过O垂直于BD的直线交AD于E,交BC于F(b).求证: EF=BF, OF=CF;(4)如图(c),若将矩形沿直线MN折叠,使顶点 B与D重合,M,N交AD于M,交BC于N.求折痕MN长. 分析: (1)矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即△AOB,△BOC,△COD和△DOA.让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路. (2)由已知∠AOD= 120°及矩形的性质分解出基本图形“含30°角的直角三角形”,经过计算可解决(2),(3)题. (3)第(4)题是用“折叠”方式叙述已知,利用轴对称的知识可以得到:折痕MN应为对角线BD的垂直平分钱,即为第(3)题中的EF.根据第(3)题结论: MN=BC=2NC=BC= 答:(1)对角线BD=8;(2) BC=;(3)MN= 例3已知:如图(a),E是矩形ABCD边CB延长线上一点, CE= CA, F为AE中点.求证:BF⊥FD. 证法一: 如图(a),由已知“CE=CA,F为AE中点”,联想到“等腰三角形三合一”的性质. 连结FC,证明∠1+∠2=90,问题转化为证明∠1=∠+3,这可通过△AFD≌△BFC(SAS)来实现. 证法二: 如图(b),由求证“BF⊥FD”联想“等腰三角形三线合一”,构造以DF为底边上高的等腰三角形,分别延长BF,DA交于G,连结BD,转化为证明△BDG为等腰三角形以及F为GB中点,这可通过△AGF≌△EBF(ASA)及GD=EC=AC=BD来实现。 (三)师生共同小结 1、矩形与平行四边形的关系,如图.指出由平行四边形得到矩形,只需要增加一个条件:一个角是直角. 2、矩形的概念及性质。 3、矩形中常利用直角三角形的性质进行计算和证明。 (四)作业 课本2,4,5题。 补充题: 1.如图,E为矩形ABCD对角线AC上一点,DE⊥AC于E,∠ADE: ∠EDC=2:3,求:∠BDE的度数.(答:18°) 2.如图,折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD上A′位置上,折痕为DG。AB=2,BC=1。求:AG的长。(答5-12) 第二课时 (一)复习 1、复习矩形与平行四边形及四边形的从属关系 2、复习矩形的定义,并指出由平行四边形得到矩形需添加一个独立条件,思考:由四边形得到矩形需要添加几个独立条件? 3、复习矩形的性质,并指出性质定理1可改为“矩形中三个角是直角”这样三个独立条件. 4、在复习提问的同时,逐步完成下图: 5、逆向探索矩形的判定方法. (1)猜想矩形性质的逆命题成立。 ①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形. (2)证明猜想,得到两个判定定理. (3)由矩形和平行四边形及四边形的从属关系将矩形的判定方法分为两类: ①从四边形出发增加三个特定的独立条件; ②从平行四边形出发增加一个特定的独立条件. (二)应用举例 例1 下列各句判定矩形的说法是否正确?为什么? (1)对角线相等的四边形是矩形;( ×) (2)对角线互相平分且相等的四边形是矩形;(√) (3)有一个角是直角的四边形是矩形;(×) (4)有四个角是直角的四边形是矩形;(√) (5)四个角都相等的四边形是矩形S;(√) (6)对角线相等,且有一个角是直角的四边形是矩形;(×) (7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√) (8)对角线相等且互相垂直的四边形是矩形.(×) 说明: (l)所给四边形添加的条件不满足三个的肯定不是矩形; (2)所给四边形添加的条件是三个独立条件,但若与定理不同,则需要利用定义和判定定理证明或举反例,才能下结论. 例2已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm. 求这个平行四边形的面积. 分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积为 例3 已知:如图在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形. 分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。 例4 已知:如图(a),ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH. 分析:要证的EG,FH为四边形EFGH的对角线,因此只需证明四边形EFGH为矩形,而题目可分解出基本图形:如图(b),因此,可选用“三个角是直角的四边形是矩形”来证明. 练习 已知:如图,在△ABC中,∠C= 90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形. (三)师生共同小结 矩形的判定方法分两类:从四边形来判定和从平行四边形来判定. 常用的判定方法有三种:定义和两个判定定理.遇到具体题目,可根据条 件灵活选用恰当的方法. 五、板书设计意图 整个板面分三部分: 左边上部展示‘平行四边形’在一定条件下转化‘矩形’的直观模型;下部书写定义、定理、推论,使本课知识清晰、完整地展现在学生面前,一目了然。 中间部分:留给学生板演,充分发挥学生的主体作用 右边部分:教师板演例题,力求证题格式严谨,培养能力。 菱形 教学目标:探索并掌握菱形的判定方法,并能综合运用。 教学重点:菱形的判定方法。 教学难点:菱形的判定方法的综合运用。 教学设计:模仿-猜想-论证-运用 教学过程: 一、知识回顾 菱形的定义:有一组邻边相等的平行四边形是菱形 菱形的性质: 1. 两条对角线互相垂直平分; 2. 四条边都相等; 3. 每条对角线平分一组对角; 4. 菱形是一个中心对称图形,也是一个轴对称图形。 这些性质对我们寻找判定菱形的方法有什么启示? 二、 新课学习 思考:除了运用菱形的定义,类比研究平行四边形和举行的性质和判定,你能找出判定菱形的其他方法吗: 猜想1:如果一个平行四边形的两条对角线相互垂直,那么这个平行四边形是菱形。 已知:平行四边形ABCD中,对角线AC、BD互相垂直。 求证:四边形ABCD是菱形. 证明:∵ 四边形ABCD是平行四边形, ∴ OA=OC(平行四边形的对角线相互平分). 又∵AC⊥BD, ∴ BD所在直线是线段AC的垂直平分线, ∴ AB=BC, ∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形). 判定定理1对角线互相垂直的平行四边形是菱形. 例题1:例 如图,已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证四边形AFCE是菱形. 证明∵ 四边形ABCD是矩形, ∴ AE∥FC(平行四边形的对边平行), ∴ ∠1=∠2. ∵ EF平分AC, ∴ AO=OC. 又∵ ∠AOE=∠COF=90°, ∴ △AOE≌△COF(A.S.A.), ∴ EO=FO, ∴ 四边形AFCE是平行四边形(对角线互相平分的四边形是平行四边形). 又∵EF⊥AC, ∴ 四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形). 猜想2四条边都相等的四边形是菱形. 已知:如图,四边形ABCD,AB=BC=CD=DA 求证:四边形ABCD是菱形 证明:∵AB=CD,BC=AD ∴四边形ABCD是平行四边形(两组对边分别相等的 四边形是平行四边形) 又∵AB=BC ∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形) 思考:这里的条件能否再减少一些呢?能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的. 判定定理2四条边都相等的四边形是菱形。 猜想3:如果一个四边形的每条对角线平分一组对角,那么这个四边形是菱形。 已知:四边形ABCD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC 求证:四边形ABCD是菱形 证明: ∵AC平分∠DAB和∠DCB ∴∠DAC=∠BAC ∠DCA=∠BCA 又∵AC=AC ∴△ADC≌△ABC(A.S.A.) ∴AD=AB,CD=CB 同理,∵BD平分∠ABC和∠ADC ∴AD=CD,AB=CB ∴AB=CD,BC=AD ∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形) 又∵AB=BC ∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形) 判定定理3每条对角线平分一组对角的四边形是菱形. 例题2如图,AD是△ABC的一条角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证四边形AEDF是菱形.(证明略) 三、随堂练习 1、用两个边长为a的等边三角形纸片拼成的四边形是( ) A、等腰梯形 B、正方形 C、矩形 D、菱形 2、下列说法中正确的是( ) A、有两边相等的平行四边形是菱形 B、两条对角线互相垂直平分的四边形是菱形 C、两条对角线相等且互相平分的四边形是菱形 D、四个角相等的四边形是菱形 四、课堂小结:判定四边形是菱形共有哪几种方法? 正方形 教学过程 (一)复习提问 1.让学生叙述平行四边形、矩形、菱形的定义和它们的特殊性质. 2.说明平行四边形、矩形、菱形的内在联系. (二)引入新课 矩形和菱形都是特殊的平行四边形,那么更加特殊的平行四边形是什么图形?它又有什么特殊性质呢?这一堂课就来学习这种特殊的图形——正方形(写出课题). (三)讲解新课 1.正方形的定义 因为学生对正方形很熟悉,所以可以直接介绍正方形的定义. 有一组邻边相等,有一个角是直角的平行四边形叫做正方形.如图4-48. 教师问:正方形是在什么前提下定义的? 学生答:平行四边形. 教师再问:包括哪两层意思? 学生答:(1)有一组邻边相等的平行四边形(菱形). (2)并且有一个角是直角的平行四边形(矩形). 画图表示正方形与矩形,正方形与菱形的从属关系如上图. 2.正方形的性质 因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结). 正方形性质定理1:正方形的四个角都是直角,四条边相等. 正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角. 说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全. 例1 如图,求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形(按教科书讲). 补充例题:如图,已知正方形ABCD,延长AB到E,连结EC,作AG⊥EC于G,AG交BC于F,求证:AF=CE. 小结:(打出投影) (1)正方形与矩形,菱形,平行四边形的关系如图. (2)正方形的性质: (四)作业 略 (五)板书设计- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年级数学下册 20.3矩形 菱形 正方形教案 沪科版 八年 级数 下册 20.3 矩形 正方形 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文