七年级数学下册 9.2《平行四边形的判定》教案 鲁教版.doc
《七年级数学下册 9.2《平行四边形的判定》教案 鲁教版.doc》由会员分享,可在线阅读,更多相关《七年级数学下册 9.2《平行四边形的判定》教案 鲁教版.doc(7页珍藏版)》请在咨信网上搜索。
9.2平行四边形的判定(1) 教学目的 1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形; 2.理解并掌握用二组对边分别相等的四边形是平行四边形 3.能运这两种方法来证明一个四边形是平行四边形。 教学重点和难点 重点:平行四边形的判定定理; 难点:掌握平行四边形的性质和判定的区别及熟练应用。 教学过程 (一)复习提问: 1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书) 2. 将以上的性质定理,分别用命题形式叙述出来。(如果……那么……) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? (二)新课 一. 平行四边形的判定: 方法一(定义法):两组对边分别平行的四边形的平边形。 几何语言表达定义法: ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形 解析:一个四边形只要其两组对边分别互相平行, 则可判定这个四边形是一个平行四边形。 活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。 方法二:两组对边分别相等的四边形是平行四边形。 设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,AB=CD,AD=BC 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1) 板书证明过程。 小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为: 判定一:二组对边分别相等的四边形是平行四边形 ∵AB=CD,AD=BC,∴四边形ABCD是平行四边形 练习:课本练习题第1题。 例题讲解: 例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。 求证: 分析:由我们学过平行四边形的性质中,对角 相等,得若证明四边形EBFD为平行四边形,便可得到,哪么如何证明该四边形为平行边形呢?可通过证明ΔABE≌ΔCDF得BE=DF;由AD=BC,E、F分别为AD和BC的中点得ED=FB。 练习:2. 已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。 求证:四边形EFGH是平行四边形。 (让学生板演) 图7 本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判定一个四边形是平行四边形。 作业布置:课本第4题、第7题。 9.2平行四边形的判定(2) 教学目的: 1、掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算; 2、培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力; 3、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点。 教学重点:掌握用“一组对边平行且相等的四边形是平行四边形”这一判定定理来判定一个四边形是平行四边形。 教学难点:判定定理的证明方法及运用。 教学过程: 一.复习引入: (1).我们已学过哪些方法来判定一个四边形的平行四边形?(提问回答) 二、新课讲解 设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形? 设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。) 小结:平行四边形判定方法五: 前提:若一个四边形有一组对边平行且相等。 结论:这个四边形是一个平行四边形。 如图用几何语言表达为: ∵AB=CD 且AB∥CD ∴四边形ABCD是平行四边形 平行且相等可用符号“ ”,读作“平行且相等”。 ∵AB CD ∴四边形ABCD是平行四边形 三.例题讲解: 例1:已知:E、F分别为平行四边形ABCD两边 AD、BC的中点,连结BE、DF 求证: 图3 分析:今天我们证明角相等,除了平行线,全等三角形外,又多了一个新方法,可以证明平行四边形对角相等,即只要四边形EBFD是平行四边形。由已知平行四边形ABCD的性质可得DE//BF,又AD=BC,E、F为中点则有DE=BF,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形EBFD是平行四边形。 证明由学生完成。 提问:此题还有什么方法,证明四边形BEDF是平行四边形。学生会想到证明,得到BE=DF,利用两组对边相等证明四边形是平行四边形。但应指出第二种方法较第一种方法繁,也就是说要找出较简捷的证法,准确地使用判定定理,就要先分析图形的性质,及所具备的条件。 练习:课本练习 小结 今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件。 注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形。 作业布置:1.课本.练习册相关内容。 9.2平行四边形的判定(3) 教学目的: 1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算; 2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算; 3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力; 教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。 教学难点:判定定理的证明方法及运用。 教学过程: 一.复习导入 1.用定义法证明一个四边形是平行四边形时,要什么条件? 2.用所学的判定方法一判定一个四边形的平行四边形的条件是什么? 3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题? 二、新课讲解: 设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么? 活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。 判定方法三:对角线互相平分的四边形是平行四边形。 这个方法的前提是什么?结论又是什么? 已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。 求证:四边形ABCD是平行四边形。 分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的) 板书证过程。 小结:由刚才证明可得,只要有对角线互相 平分,可判定这个四边形是平行四边形。 几何语言表达:∵OA=OC, OB= OD ∴四边形ABCD是平行四边形 例题讲 解:课本例3。 分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。 设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么? A B 已知:在四边形ABCD中,∠A =∠C ∠B=∠D。 D C 求证:四边形ABCD是平行四边形(让学生板书,然后小结) 练习:延长三角形ABC的中线BD至E, 使DE=BD,连结AE、CE,如图, 求证:∠BAE=∠BCE。 证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。 本课小结: 目前,我们研究平行四边形的哪些性质和判定: 平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补; 平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形; 作业布置: 1、熟记判定定理; 2.课本作业- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形的判定 七年级数学下册 9.2平行四边形的判定教案 鲁教版 七年 级数 下册 9.2 平行四边形 判定 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文