新疆兵团第五师八十八团学校九年级数学下册《一元二次方程的应用》教案(一) 新人教版.doc
《新疆兵团第五师八十八团学校九年级数学下册《一元二次方程的应用》教案(一) 新人教版.doc》由会员分享,可在线阅读,更多相关《新疆兵团第五师八十八团学校九年级数学下册《一元二次方程的应用》教案(一) 新人教版.doc(9页珍藏版)》请在咨信网上搜索。
《一元二次方程的应用》教案(一) 一、素质教育目标 (-)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题. (二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力. (三)德育渗透点:通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性. 二、教学重点、难点 1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题. 2.教学难点:根据数与数字关系找等量关系. 三、教学步骤 (一)明确目标 初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用——有关数字方面的问题. (二)整体感知: 本小节是“一元一次方程的应用”的继续和发展.由于能用一元一次方程(或一次方程组)解的应用题,一般都可以用算术方法解,而需用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以,讲解本小节可以使学生认识到用代数方法解应用题的优越性与必要性. 从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多. 通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去. 例1是已知两个连续奇数求这两个数的问题,讲清这个问题的关键是搞清楚“两连续奇数”的意义,能用代数式分别表示出两个连续奇数,问题就可以解决,启发学生用不同的方法去解,并加以对比,从而开拓思路. (三)重点、难点的学习和目标完成过程 1.复习提问 (1)列方程解应用问题的步骤? ①审题,②设未知数,③列方程,④解方程,⑤答. (2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数). 2.例1 两个连续奇数的积是323,求这两个数. 分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1. 以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法. 解法(一) 设较小奇数为x,另一个为x+2, 据题意,得x(x+2)=323. 整理后,得x2+2x-323=0. 解这个方程,得x1=17,x2=-19. 由x=17得x+2=19,由x=-19得x+2=-17, 答:这两个奇数是17,19或者-19,-17. 解法(二) 设较小的奇数为x-1,则较大的奇数为x+1. 据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19. 当x=-18时,-18-1=-19,-18+1=-17. 答:两个奇数分别为17,19;或者-19,-17. 解法(三) 设较小的奇数为2x-1,则另一个奇数为2x+1. 据题意,得(2x-1)(2x+1)=323. 整理后,得4x2= 324. 解得,2x=18,或2x=-18. 当2x=18时,2x-1=18-1=17;2x+1=18+1=19. 当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17 答:两个奇数分别为17,19;-19,-17. 引导学生观察、比较、分析解决下面三个问题: 1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗? 2.解题中的x出现了负值,为什么不舍去? 答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种. 练习 1.两个连续整数的积是210,求这两个数. 2.三个连续奇数的和是321,求这三个数. 3.已知两个数的和是12,积为23,求这两个数. 学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数. 分析:数与数字的关系是: 两位数=十位数字×10+个位数字. 三位数=百位数字×100+十位数字×10+个位数字. 解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x. 据题意,得10(x-2)+x=3x(x-2), 整理,得3x2-17x+20=0, 当x=4时,x-2=2,10(x-2)+x=24. 答:这个两位数是24. 以上分析,解答,教师引导,板书,学生回答,体会,评价. 注意:在求得解之后,要进行实际题意的检验. 练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53) 2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数. 教师引导,启发,学生笔答,板书,评价,体会. (四)总结,扩展 1.列一元二次方程解应用题,步骤与以前列方程解应用题一样,其中审题是解决问题的基础,找等量关系列方程是关键,恰当灵活地设元直接影响着列方程与解法的难易,它可以为正确合理的答案提供有利的条件.方程的解必须进行实际题意的检验. 2.奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数. 数与数字的关系 两位数=(十位数字×10)+个位数字. 三位数=(百位数字×100)+(十位数字×10)+个位数字. …… 3.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途. 四、布置作业 教材P.42中A1、2、 五、课后记 从列方程解应用题的方法来说,列出的一元二次方程解应用题与列出一元一次方程解应用题类似,都是根据问题中的相等关系列出方程、解方程、判断根是否适合题意、作出正确的答案.列出一元二次方程解应用问题,其应用相当广泛,如在几何、物理及其他学科中都有大量问题存在;其数量关系也比可以用一元一次方程解决的问题复杂的多. 通过本节课的学习,渗透设未知数、列方程的代数方法,领略知识从实践中来到实践中去.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元二次方程的应用 新疆兵团第五师八十八团学校九年级数学下册一元二次方程的应用教案一 新人教版 新疆 兵团 第五 八十八 学校 九年级 数学 下册 一元 二次方程 应用 教案 新人
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文