3.4 回顾与思考教案 新课标.doc
《3.4 回顾与思考教案 新课标.doc》由会员分享,可在线阅读,更多相关《3.4 回顾与思考教案 新课标.doc(7页珍藏版)》请在咨信网上搜索。
3.4 回顾与思考 教学目标 1.知识目标:复习因式分解的概念,以及灵活运用提公因式法,公式法分解因式. 2.能力目标:培养学生归纳总结能力,分析问题和解决问题的能力. 3.情感目标:通过因式分解的练习,提高学生观察和分析能力及解决实际问题的意识. 教学重点 综合应用提公因式法,运用公式法分解因式. 教学难点 利用分解因式进行计算. 教学方法 归纳总结法. 教学过程 1.创设情境,自然引入 前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.本节课,我们来综合总结一下这一章所学的内容有哪些? (1)有因式分解的意义,提公因式法和运用公式法的概念. (2)分解因式与整式乘法的关系. (3)分解因式的方法. 2.归纳总结,概括知识 (1)举例说明什么是分解因式. 如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2) (2)学习因式分解的概念应注意以下几点: ①因式分解是一种恒等变形,即变形前后的两式恒等. ②把一个多项式分解因式应分解到每一个多项式都不能再分解为止. (3)分解因式与整式乘法有什么关系? 分解因式与整式乘法互为逆运算。 如:ma+mb+mc=m(a+b+c)从左到右是因式分解,从右到左是整式乘法. (4)分解因式常用的方法有哪些? 提公因式法和运用公式法.可以分别用式子表示为: ma+mb+mc=m(a+b+c) a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 3.变式训练,巩固提高 例1.下列各式的变形中,哪些是因式分解?哪些不是?为什么? (1)x2+3x+4=(x+2)(x+1)+2 (2) 6x2y3=3xy·2xy2 (3)(3x-2)(2x+1)=6x2-x-2 (4)4ab+2ac=2a(2b+c) 分析:解答本题的依据是因式分解的定义,即把一个多项式化成几个整式的积的形式是因式分解,否则不是. 解:(1)不是因式分解,因为右边的运算中还有加法. (2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解. (3)不是因式分解,而是整式乘法. (4)是因式分解. 例2.将下列各式分解因式 (1)8a4b3-4a3b4+2a2b5 (2)-9ab+18a2b2-27a3b3 (3)-x2 (4)9(x+y)2-4(x-y)2 (5)x4-25x2y2 (6)4x2-20xy+25y2 (7)(a+b)2+10c(a+b)+25c2 解:(1)8a4b3-4a3b4+2a2b5 =2a2b3(4a2-2ab+b2) (2)-9ab+18a2b2-27a3b3 =-(9ab-18a2b2+27a3b3) =-9ab(1-2ab+3a2b2) (3)-x2=()2-(x)2 =(+ x)(-x) (4)9(x+y)2-4(x-y)2 =[3(x+y)]2-[2(x-y)]2 =[3(x+y)+2(x-y)][3(x+y)-2(x-y)] =(3x+3y+2x-2y)(3x+3y-2x+2y) =(5x+y)(x+5y) (5)x4-25x2y2=x2(x2-25y2) =x2(x+5y)(x-5y) (6)4x2-20xy+25y2 =(2x)2-2·2x·5y+(5y)2 =(2x-5y)2 (7)(a+b)2+10c(a+b)+25c2 =(a+b)2+2·(a+b)·5c+(5c)2 =[(a+b)+5c]2 =(a+b+5c)2 例3.把下列各式分解因式 (1)x7y3-x3y3 (2)16x4-72x2y2+81y4 解:(1)x7y3-x3y3 =x3y3(x4-1) =x3y3(x2+1)(x2-1) =x3y3(x2+1)(x+1)(x-1) (2)16x4-72x2y2+81y4 =(4x2)2-2·4x2·9y2+(9y2)2 =(4x2-9y2)2 =[(2x+3y)(2x-3y)]2 =(2x+3y)2(2x-3y)2 4.总结串联,纳入系统 分解因式的一般步骤为: (1)若多项式各项有公因式,则先提取公因式. (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式. (3)每一个多项式都要分解到不能再分解为止. 教学检测 一、请你选一选 1.-(2a-b)(2a+b)是下列哪一个多项式的分解结果( ) A.4a2-b2 B.4a2+b2 C.-4a2-b2 D.-4a2+b2 2.多项式(3a+2b)2-(a-b)2分解因式的结果是( ) A.(4a+b)(2a+b) B.(4a+b)(2a+3b) C.(2a+3b)2 D.(2a+b)2 3.下列多项式,能用完全平方公式分解因式的是( ) A.x2+xy+y2 B.x2-2x-1 C.-x2-2x-1 D.x2+4y2 4.多项式4a2+ma+25是完全平方式,那么m的值是( ) A.10 B.20 C.-20 D.±20 5.在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于( ) A.100 cm2 B.105 cm2 C.108 cm2 D.110 cm2 二、请你来计算 1.把下列各式分解因式 (1)16a2-9b2; (2)(x2+4)2-(x+3)2; (3)-4a2-9b2+12ab; (4)(x+y)2+25-10(x+y) 2.利用因式分解进行计算 (1)9x2+12xy+4y2,其中x=,y=-; (2)()2-()2,其中a=-,b=2. 3.求满足4x2-9y2=31的正整数解. 参考答案 一、请你选一选 1.D 2.B 3.C 4.D 5.D 二、请你来计算 1.(1)16a2-9b2=(4a)2-(3b)2 =(4a+3b)(4a-3b); (2)(x2+4)2-(x+3)2 =[(x2+4)+(x+3)][(x2+4)-(x+3)] =(x2+4+x+3)(x2+4-x-3) =(x2+x+7)(x2-x+1); (3)-4a2-9b2+12ab =-(4a2+9b2-12ab) =-[(2a)2-2·2a·3b+(3b)2] =-(2a-3b)2; (4)(x+y)2+25-10(x+y) =(x+y)2-2·(x+y)·5+52 =(x+y-5)2 2.(1)9x2+12xy+4y2 =(3x)2+2·3x·2y+(2y)2 =(3x+2y)2 当x=,y=-时 原式=[3×+2×(-)]2 =(4-1)2 =32 =9 (2)()2-()2 =(+ )(-) =ab 当a=-,b=2时 原式=-×2=-. 3. 解:∵4x2-9y2=31 ∴(2x+3y)(2x-3y)=1×31 ∴或 解得或 因所求x、y为正整数,所以只取x=8,y=5.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.4 回顾与思考教案 新课标 回顾 思考 教案 新课
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文