七年级数学下册 简单的轴对称图形(第一课时)教案 北师大版.doc
《七年级数学下册 简单的轴对称图形(第一课时)教案 北师大版.doc》由会员分享,可在线阅读,更多相关《七年级数学下册 简单的轴对称图形(第一课时)教案 北师大版.doc(9页珍藏版)》请在咨信网上搜索。
简单的轴对称图形 教学设计第(一)课时 教学设计思想: 本节内容需两课时讲授;本节知识是在学生对图形已有初步的认识以后,教师从学生熟悉的生活经验引入生活中的轴对称现象,引导学生进一步探究轴对称图形的特征;然后又从讨论一个实际问题的解决办法开始,进入对等腰三角形概念与性质的探究,然后引导学生发散思维,把探究成果迁移到对正三角形的认识和性质的探索中,以发挥学生学习的主动性. 教学目标: (一)知识与技能 1.掌握角的平分线的性质. 2.掌握线段垂直平分线的性质. (二)过程与方法 1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念. 2.探索并了解角的平分线、线段垂直平分线的有关性质. (三)情感与价值观要求 通过师生的共同活动,培养学生的动手能力,进一步发展其空间观念. 教学重点: 探索角的平分线,线段的垂直平分线的性质. 教学难点: 体验轴对称的特征. 教学方法: 启发诱导法. 教具准备: 投影片 教学安排: 2课时. 教学过程: Ⅰ.巧设现实情景,引入新课 [师]上节课我们探讨了轴对称图形,知道现实生活中由于有轴对称图形,而显得异常美丽.那什么样的图形是轴对称图形呢? [生]如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. [师]很好,大家想一想,我们以前学过的哪些几何图形是轴对称图形呢? [生甲]正方形、矩形. [生乙]圆、菱形. [生丙]等腰三角形、角. [师]很好.今天我们就来研究简单的轴对称图形. Ⅱ.讲授新课 [师]同学们想一想: 角是轴对称图形吗?如果是,它的对称轴是什么? [生甲]角是轴对称图形. [生乙]角平分线所在的直线是它的对称轴. [师]是吗?你能验证吗?我们来做一做 按下面的步骤做一做 1.在一张纸上任意画一个角∠AOB,沿角的两边将角剪下.将这个角对折,使角的两边重合. 2.在折痕(即角平分线)上任意取一点C; 3.过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA边的交点,即垂足. 4.将纸打开,新的折痕与OB边的交点为E. [师]老师和大家一起动手. (教师叙述步骤,师生共同操作) 然后教师演示课件——角平分线. [师]通过第一步,我们可以验证什么? [生齐声]可以知道:角是轴对称图形,角平分线所在的直线是它的对称轴. [师]很好,在上述的操作过程中,你发现了哪些相等的线段? [生]我发现了:CD与CE是相等的. [师]为什么呢? [生]因为折痕CD与CE互相重合. [师]还可以怎么说呢?可不可以利用三角形全等呢? [师生共析]如图7-1,CD垂直OA、CE垂直OB,则∠ODC=∠OEC=90°.因为:OC平分∠AOB,则∠AOC=∠BOC.又因为OC是公共边,所以根据“两角和其中一角的对边对应相等的两个三角形全等”得:△COD与△COE全等,再由“全等三角形的对应边相等”得:CD=CE. 图7-1 [师]很好,在上述操作过程中,如果在折痕即角平分线上另取一点,再折一折,然后小组讨论,你会得出什么结论呢? [生]角的平分线上的点到这个角的两边的距离相等. [师]同学们总结得很好,这就是角平分线除平分角外的另一个主要性质.在这里需要注意的是:①一个点在角的平分线上;②角平分线上的点到角的两边的距离是相等的. 好,大家再来想一想: 线段是轴对称图形吗?如果是,你能找出它的一条对称轴吗? [生甲]线段是轴对称图形,它的对称轴是与线段垂直的且垂足是线段中点的直线. [生乙]线段还可以沿它所在的直线对折,使得与原来的线段重合,所以说:线段所在的直线也是线段的对称轴. [师]很好.同学们知道了线段是轴对称图形,还找到了它的对称轴.现在大家来按照研究角的思路来探索线段的轴对称性. 按照下面的步骤来做一做: (1)画一条线段AB,对折AB使点A、B重合,折痕与AB的交点为O. (2)在折痕上任取一点C,沿CA将纸折叠. (3)把纸展开,得到折痕CA和CB. (1)CO与AB有怎样的位置关系? (2)OA与OB相等吗?CA与CB呢?能说明你的理由吗?在折痕上另取一点,再试一试. (学生操作、思考,教师指导) [生甲]通过折叠,我们验证了线段是轴对称图形. [生乙]CO与AB是垂直的. [生丙]OA与OB相等,因为OA与OB重合;CA与CB也是相等的,因为它们互相重合. [师]很好.OA与OB相等,而A、O、B是在同一直线上,所以可知:O是线段AB的中点,OC与AB是垂直的,因此可以知道:线段的一条对称轴垂直于这条直线且平分它,我们把这样的直线叫做这条线段的垂直平分线,简称中垂线(midperpendicular). 点C是AB的中垂线上一点,则有CA=CB,若在线段AB的中垂线上另取一点D,是否也有DA=DB呢?大家来试一试. [生]我们通过操作可知:DA=DB. [师]那由此可以得到什么样的结论呢?同学们讨论、归纳. [生]从刚才操作的过程及得出的结论可以知道:线段的垂直平分线上的点到这条线段两个端点的距离相等. [师]很好.这样我们得到了线段垂直平分线的性质: 线段垂直平分线上的点到这条线段两个端点的距离相等. 这个性质具有绝对性.如:有一条线段AB,如果直线MN是线段AB的垂直平分线,那么如果给出一点O,无论O点是否在直线上,还是在直线外,只要O点在MN上,我们就可以得出结论:OA=OB. 你能说明理由吗? [师生共析]我们可以用三角形全等来说明它.如图7-2: 图7-2 直线MN是线段AB的中垂线,则可以知道:MN⊥AB于D,AD=DB.所以可得∠ADC=∠BDC=90°,因为CD是公共边,所以由“两边及其夹角对应相等的两个三角形全等”得:△ADC≌△BDC.从而由“全等三角形的对应边相等”得:CA=CB. 现在我们来学习如何画线段的垂直平分线. 教师演示课件——垂直平分线. [师]好,下面我们通过练习来熟悉掌握角平分线的性质及线段垂直平分线的性质. Ⅲ.课堂练习 (一)课本P193随堂练习 1 1.如图7-3,在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么? 图7-3 答:DE与DC相等. 理由是:射线BD是∠ABC的平分线,点D到角两边BA、BC的距离分别是线段DE、DC,所以:DE=DC (二)看课本P191~193,然后小结. Ⅳ.课时小结 这节课通过探索简单图形轴对称性的过程,了解了角的平分线、线段垂直平分线的有关性质.同学们应灵活应用这些性质来解决问题. Ⅴ.课后作业 (一)课本P193习题7.2 1、2、3. (二)1.预习内容P194~195 2.预习提纲: (1)等腰三角形的轴对称性. (2)等腰三角形的有关性质. (3)等边三角形的轴对称性及其性质. Ⅵ.活动与探究 如图7-4所示:要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 图7-4 [过程]让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A′、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点. [结果]如图7-5. 图7-5 作点A关于l(街道看成是一条直线)的轴对称点A′,连接A′B与l交于C点.奶站应建在C点处,才能使从A、B到它的距离之和最短. 板书设计: §7.2.1 简单的轴对称图形(一) 一、角是轴对称图形. 二、角的平分线的性质: 角的平分线上的点到这个角的两边的距离相等. 三、线段是轴对称图形,线段的垂直平分线. 四、线段的垂直平分线的性质: 线段垂直平分线上的点到这条线段两个端点的距离相等.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年级数学下册 简单的轴对称图形第一课时教案 北师大版 七年 级数 下册 简单 轴对称 图形 第一 课时 教案 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文