七年级数学上册 第一章有理数第三套教案(共70页)人教新课标版.doc
《七年级数学上册 第一章有理数第三套教案(共70页)人教新课标版.doc》由会员分享,可在线阅读,更多相关《七年级数学上册 第一章有理数第三套教案(共70页)人教新课标版.doc(77页珍藏版)》请在咨信网上搜索。
第一章 有理数教案 教学目标 1.知识与技能 ①通过生活实例,了解有理数等知识是生活的需要. ②理解并掌握数轴、相反数、绝对值、有理数等有关概念. ③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算. 2.过程与方法 通过全章的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力. 3.情感、态度与价值观 ①通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活. ②通过本章知识的学习,给学生渗透辩证唯物主义思想. 教学重点难点 重点:有理数的运算,这一章的主要学习目标都可以归结到有理数的运算上,诸如有理数的有关概念、运算法则、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上. 难点:负数概念的建立,对有理数中的有关概念以及有理数法则的理解,绝对值意义和运算中符号的确定. 课时分配 内容 课时 1.1 正数和负数 1 1.2 有理数 4 1.3 有理数的加减法 5 1.4 有理数的乘除法 4 1.5 有理数的乘方 4 单元复习与验收 2 教学建议 教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题以及解决问题,从而使学生自得知识,自觅规律.在这过程中,训练学生分析问题、解决问题的能力. 1.在进行有理数的有关概念的教学时: (1)注意从实际问题引入,使学生知道数学知识来源于生活.如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系. (2)注意利用数轴的直观性讲述相反数、绝对值,发挥字母表示数的优越性,使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础. 2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴更直观形象易理解,并且要着重在符号法则的基础上,进行基本运算训练,提高学生计算准确率. 1.1 正数和负数 教学目标 1.知识与技能 ①了解正数与负数是实际生活的需要. ②会判断一个数是正数还是负数. ③会用正负数表示互为相反意义的量. 2.过程与方法 通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力. 3.情感、态度与价值观 ①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务. ②通过正负数的学习,渗透对立、统一的辩证思想. 教学重点难点 重点:会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义. 难点:负数的引入. 教与学互动设计 (一)创设情境,导入新课 课件展示 珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况. (二)合作交流,解读探究 1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等. 想一想 以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢? 2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外). 活动 每组同学之间相互合作交流,一同学任说有关相反的两个量,由其他同学用正负数表示. 讨论 什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数. 【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界. (三)应用迁移,巩固提高 例1 举出几对具有相反意义的量,并分别用正、负数表示. 【提示】 相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等. 【点评】 这是一道开放性试题,旨在考查用正负数与相反意义量的表示能力. 例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,那么-0.03克表示什么? 【答案】 表示比标准质量低0.03克. 例3 2001年美国的商品进出口总额比上年减少6.4%可记为 -6.4% ,中国增长7.5%可记为 +7.5% . 备选例题 (2004·山东淄博)某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为 ( ) A.3 B.-3 C.-2.5 D.-7.45 【点拨】 读懂题意是解决本题的关键.7:45与10相差135分钟. 【答案】 B (四)总结反思,拓展升华 为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数. 1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是 –81 ,第2005个数是 –2005 . 【提示】通过观察可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正. 【点评】 本节是对探究问题的训练. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”): 表1-1-1 星期 日 一 二 三 四 五 六 (元) +16 +5.0 -1.2 -2.1 -0.9 +10 -2.6 (1)本周小张一共用掉了多少钱?存进了多少钱? 【答案】 6.8元,31元. (2)储蓄罐中的钱与原来多了还是少了? 【答案】 多了. (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣. 【答案】 用文字说明,但前者更简洁. 3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”. (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”; (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏; (3)这不仅仅是游戏哟!在电脑中,所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势. (五)课堂跟踪反馈 夯实基础 1.填空题 (1)如果节约用水30吨记为+30吨,那么浪费20吨记为 -20 吨. (2)如果4年后记作+4,那么8年前记作 -8 . (3)如果运出货物7吨记作-7吨,那么+100吨表示 运进货物100吨 . (4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg . 2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米. (1)用正数或负数记录下午1时和下午5时的水位; (2)下午5时的水位比中午12时水位高多少? 【答案】 (1)下午1时,水位0.5米;下午5时,水位-1米 (2)0.5+1=1.5(米) 提升能力 3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数. 【答案】 +2,-1,-0.2. 4.有没有这样的有理数,它既不是正数,也不是负数? 【答案】 有,是0. 5.下列各数中哪些是正数?哪些是负数? -15,-0.02,,-,4,-2,1.3,0,3.14, 【答案】 正数:,4,1.3,3.14,;负数:-15,0.02,-,-2 开放探究 6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时? 【答案】 最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时. 7.新中考题 (2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,则温度高的是冷库 A . 1.2 有理数 1.2.1 有理数 教学目标 1.知识与技能 ①理解有理数的意义. ②能把给出的有理数按要求分类. ③了解0在有理数分类的作用. 2.过程与方法 经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力. 3.情感、态度与价值观 通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育. 教学重点难点 重点:会把所给的各数填入它所在的数集的图里. 难点:掌握有理数的两种分类. 教与学互动设计 (一)创设情境,导入新课 讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数. (二)合作交流,解读探究 学生列举:3,5.7,-7,-9,-10,0,,,-3, -7.4,5.2… 议一议 你能说说这些数的特点吗? 学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数. 说明:我们把所有的这些数统称为有理数. 试一试 你能对以上各种类型的数作出一张分类表吗? 有理数 说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢? 做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试. 有理数 (3)数的集合 把所有正数组成的集合,叫做正数集合. 试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合. (三)应用迁移,巩固提高 例1 把下列各数填入相应的集合内: ,3.1416,0,2004,-,-0.23456,10%,10.l,0.67,-89 … … … … 正数集合 负数集合 整数集合 分数集合 【答案】 例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗?为什么? 有理数 有理数 【答案】 两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈. 【点评】 以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视 (B) ①0是最小的正整数 ②0是最小的有理数 ③0不是负数 ④0既是非正数,也是非负数 A.1个 B.2个 C.3个 D.4个 例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法. 【答案】 不一定,a可能是正数,可能是负数,也可能是0. 【点评】 此题开放性较强.同时,要求学生能用分类的思想对a全面认识. 备选例题 (2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.,,,________,,…你的理解是_________. 【点拨】 找出各项数的特点是本题关键所在,第一个数为,后一个数是前一个数的分子,分母都加1所得的数. 【答案】 (四)总结反思,拓展升华 提问:今天你获得了哪些知识? 由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法. 1. 请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、有理数集、正数集、分数集、负数集. 【答案】 答案不唯一,如图1-2-2所示. 2.有理数按正、负可分为 按整数分,可分为 (1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数. (2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年. 3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢? 答案 负分数 (五)课堂跟踪反馈 夯实基础 1.把下列各数填入相应的大括号内: -7,0.125,,-3,3,0,50%,-0.3 (1)整数集合{-7,3,0} (2)分数集合{0.125,,-3,50%,-0.3} (3)负分数集合{-3,-0.3} (4)非负数集合{0.125,,3,0,50%} (5)有理数集合{-7,0.125,,-3,3,0,50%,-0.3} 2.下列说法正确的是(D) A.整数就是自然数 B.0不是自然数 C.正数和负数统称为有理数 D.0是整数而不是正数 3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克. 提升能力 4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数? 【答案】a可以表示正整数,正分数,0,负整数或负分数. 5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下: -2 -1 2 -1 3 0 -1 -2 1 0 (1)这10名男生有百分之几达标(即达标率)? (2)这10名男生共做了多少个引体向上? 【答案】 (1)50%;(2)5×10-1=49(个) 开放探究 6.应用创新题 若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗? 【答案】 在A地西边5米处. 7.新中考题 (2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高 (A) A.4℃ B.-4℃ C.8℃ D.-8℃ (六)资料采撷 原始的计算工具 计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数. 在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退. 在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结. 古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找. 1.2.2 数轴 教学目标 1.知识与技能 ①掌握数轴三要素,能正确画出数轴. ②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数. 2.过程与方法 ①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识. ②结合本节内容,对学生渗透数形结合的重要思想方法. 3.情感、态度与价值观 使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点. 教学重点难点 重点:数轴的概念. 难点:从直观认识到理性认识,从而建立数轴概念. 教与学互动设计 (一)创设情境,导入新课 课件展示 在一条东西方向的马路上,有一个学校,学校东50m和西150m处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图) (二)合作交流,解读探究 师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容──数轴. 点拨 (1)引导学生学会画数轴. 第一步:画直线定原点 第二步:规定从原点向右的方向为正(左边为负方向) 第三步:选择适当的长度为单位长度(据情况而定) 第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处. 对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么? (2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴. 试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-,0吗? 讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?与原点又相距了多少个长度单位? 小结 整数能在数轴上都找到点吗?分数呢? 可见,所有的__________都可以用数轴上的点表示___________都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高 例1 下列所画数轴对不对?如果不对,指出错在哪里. 【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错 例2 试一试:用你画的数轴上的点表示4,1.5,-3,-,0 【答案】 图中A点表示4,B点表示1.5,C点表示-3,D点表示-,E点表示0. 例3 如果a是一个正数,则数轴上表示数a的点在原点的什么位置上?表示-a的点在原点的什么位置上呢? 【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边. 【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数. 【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合. 例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B) A.1个 B.2个 C.3个 D.4个 【提示】 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数. 例5 (1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 和 -2.5 . (2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是 +3 . 例6 在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数. 【答案】 -2,-1,0,1 【点评】 本题反映了数形结合的思想方法. 例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C) A.1998或1999 B.1999或2000 C.2000或2001 D.2001或2002 【提示】分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2000个整点. 【点评】 本题体现了新课程标准的探索和实践能力. 备选例题 (2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________. 【点拨】 不要忽视在原点的左右两边. 【答案】 ±3 (四)总结反思,拓展升华 数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数. 一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图: (1)点M4和M2所表示的有理数是什么? (2)点M3和M5两点间的距离为多少? (3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明; (4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少? 【答案】 (1)M4表示2,M2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度. (五)课堂跟踪反馈 夯实基础 1.规定了 原点 、 正方向 、 单位长度的直线 叫数轴,所有的有理数都可从用 数轴 上的点来表示. 2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 . 3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C) A.7 B.-3 C.7或-3 D.不能确定 4.在数轴上,原点及原点左边的点所表示的数是(D) A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别 在原点的两边 . 提升能力 6. 1 是最小的正整数, 0 是最小的非负数, 0 是最大的非正数. 7.与原点距离为3.5个单位长度的点有 2 个,它们分别是 3.5 和 -3.5 . 8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3 【答案】 略 开放探究 9.在数轴上与-1相距3个单位长度的点有 2 个,为 -4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点. 10.新中考题 (2004·南京)下列四个数中,在-2到0之间的数是(A) A.-1 B.1 C.-3 D.3 1.2.3 相反数 教学目标 1.知识与技能 ①借助数轴了解相反数的概念,知道互为相反数的位置关系. ②给一个数,能求出它的相反数. 2.过程与方法 ①训练学生利用数轴应用数形结合的方法解决问题. ②培养学生自己归纳总结规律的能力. 3.情感、态度与价值观 ①通过相反数的学习,渗透数形结合的思想. ②感受事物之间对立、统一联系的辩证思想. 教学重点难点 重点:理解相反数的意义. 难点:理解和掌握双重符号简化的规律. 教与学互动设计 (一)创设情境,导入新课 活动 请一个学生到讲台前面对大家,向前走5步,向后走5步. 交流 如果向前走为正,那向前走5步与向后走5步分别记作什么? (二)合作交流,解读探究 1.观察下列数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出. 想一想 (1)上述各对数之间有什么特点? (2)表示这两对数的点在数轴上有什么特点? (3)你能够写出具有上述特点的数吗? 观察 像这样只有符号不同的两个数叫相反数. 两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零. 【总结】 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数. 2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0. (三)应用迁移,巩固提高 例1 填空 (1)-5.8是 5.8 的相反数, 3 的相反数是-(+3),a的相反数是 –a ,a-b的相反数是 -(a-b) ,0的相反数是 0 . (2)正数的相反数是 负数 ,负数的相反数是 正数 , 0 的相反数是它本身. 例2 下列判断不正确的有 (C) ①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点. A.1个 B.2个 C.3个 D.4个 例3 化简下列各符号: (1)-[-(-2)] (2)+{-[-(+5)]} (3)-{-{-…-(-6)}…}(共n个负号) 【答案】 (1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6. 【提示】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负. 例4 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,点B和点C各对应什么数? 【答案】 C点表示2或6,则相应的B点应表示-2或-6. 【提示】 画出数轴,结合数轴的特点来分析. 【点评】 经历观察数学活动,发展自己的指导能力. 备选例题 (2004·江西)如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是___________. 【点拨】 由数轴上的位置,不难知道a是一个负数,这是解决本题的前提. 【答案】 -a (四)总结反思,拓展升华 归纳 ①相反数的概念及表示方法. ②相反数的代数意义和几何意义. ③符号的化简. 1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么? (2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数. 【答案】 (1)不正确,如0的相反数还是0,负数的相反数是正数. (2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4. 2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢? 【提示】 结合数轴进行观察比较. 解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3. ∴-a在1和-3之间 故-3≤a≤1 ∴a的相反数是不小于-3又不大于1的数. 【点评】 在解决问题中,能进行简单的、有条理的思考. (五)课堂跟踪反馈 夯实基础 1.判断题 (1)-3是相反数 (×) (2)-7和7是相反数 (∨) (3)-a的相反数是a,它们互为相反数 (∨) (4)符号不同的两个数互为相反数 (×) 2.分别写出下列各数的相反数,并把它们在数轴上表示出来. 1,-2,0,4.5,-2.5,3 【答案】 相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略. 3.若一个数的相反数不是正数,则这个数一定是(B) A.正数 B.正数或0 C.负数 D.负数或0 4.一个数比它的相反数小,这个数是(B) A.正数 B.负数 C.非负数 D.非正数 5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是±. 6.比-6的相反数大7的数是 13 . 提升能力 7.若a与a-2互为相反数,则a的相反数是 –1 . 8.(1)-(-8)的相反数是 –8 , (2)+(-6)是 6 的相反数. (3) 1-a 的相反数是a-1. (4)若-x=9,则x= -9 . 9.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示,并将这6个数用“<”连接起来. 【答案】 -3<-n<m<-m<n<3 开放探究 10.如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数. 11.试讨论-a的正负. 【答案】 当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0. 12.新中考题 (2004·河南)-的相反数是 (A) A. B.- C. D.- 1.2.4 绝对值(第一课时) 教学目标 1.知识与技能 ①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值. ②通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.过程与方法 经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力. 3.情感、态度与价值观 ①通过解释绝对值的几何意义,渗透数形结合的思想. ②体验运用直观知识解决数学问题的成功. 教学重点难点 重点:给出一个数,会求它的绝对值. 难点:绝对值的几何意义、代数定义的导出. 教与学互动设计 (一)创设情境,导入新课 活动 请两同学到讲台前,分别向左、向右行3米. 交流 ①他们所走的路线相同吗? ②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少? (二)合作交流,解读探究 观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同. 【总结】 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值. 绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│. 想一想 (1)-3的绝对值是什么? (2)+2的绝对值是多少? (3)-12的绝对值呢? (4)a的绝对值呢? 答案略. 交流 同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值. 思考 例1 求8,-8,3,-3,,-的绝对值.(出示胶片) 由此,你想到什么规律? 总结 互为相反数的两个数的绝对值相同. 求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片) 由此,你想到什么规律? 讨论交流 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是零. 总结 正数的绝对值是它本身. 负数的绝对值是它的相反数. 零的绝对值是零. 讨论 字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少? 学生活动:分组讨论,教师加入讨论,学生相反补充回答. 归纳 若a>0,则│a│=a- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年级数学上册 第一章有理数第三套教案共70页人教新课标版 七年 级数 上册 第一章 有理数 第三 教案 70 新课
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文