二次函数与一元二次方程.3二次函数与一元二次方程(课时1)教学设计.doc
《二次函数与一元二次方程.3二次函数与一元二次方程(课时1)教学设计.doc》由会员分享,可在线阅读,更多相关《二次函数与一元二次方程.3二次函数与一元二次方程(课时1)教学设计.doc(4页珍藏版)》请在咨信网上搜索。
21.3二次函数与一元二次方程 第一课时 教学目标: 知识与技能 :1、理解二次函数y=ax2 + bx + c与x轴有交点,则一元二次方程 Ax2 + bx + c = 0有实数根,若与x轴无交点,则方程无实数根 2、知道抛物线与x轴三种位置关系,对应着一元二次方程的根的三种情况. 过程与方法 :通过对一元二次方程根的不同情况下,学生历经从函数解析式及函数图象角度探索与一元二次方程之间的关系,渗透了数形结合及转化的思想方法. 情感、态度与价值观 :通过师生交流、生生交流,学生养成了乐于探究、勇于探索的良好学习习惯,同时学生从中也感受了合作成功带来的喜悦. 教学重点、教学难点: 重点 如何让学生理解一元二次方程与二次函数之间的关系. 难点 让学生理解用图形法能求方程解的合理性及方法步骤. 教学方法与教学手段: 教学方法 采用“主动探究、合作交流”的数学活动模式,真正为学生创设一个 自主探究、合作交流的活动空间,让每个人获得有价值的数学. 教学手段 为了使学生的活动更加充分有效,增强教学直观性,利用多媒体、来 辅助教学 教学过程: 一、复习 1、一元二次方程x2-2x-3=0的根为: 。 2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△ = 。 当△﹥0方程根的情况是: ;当△=0时,方程 ; 当△﹤0时,方程 。 3、二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像是一条 ,它与x轴的交点有几种可能的情况? 活动方式:学生回答,复习巩固已学知识. 〖设计意图〗 通过已学知识,为探所二次函数与一元二次方程的的关系做铺垫,从而引出课题. 二、创设问题情境,引入新课 师:上学期我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解. 现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题. 三、活动探究 二次函数①y= x2+2x, ②y=x2-2x+1, ③y= x2-2x+2的图象如下图所示. (1)每个图象与x轴有几个交点? (2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 师:还请大家先讨论后解答. 答:(1)二次函数y= x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点. (2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根. (3)从观察图象和讨论中可知,二次函数y= x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2; 二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y= x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根. 由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根。 总结:二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。 〖设计意图〗 学生从图象角度出发,去探索函数值一定时,得出一元二次方程的根,即为两图象交点的横坐标,并发现交点的个数为方程根的个数, 四.新知运用 1、判断下列函数图象与x 轴是否有公共点,并说明理由。 (1) (2) (3) 2、在上元中学校运会上,初三(8)班运动员掷铅球,铅球的高y(m)与水平距离x(m)之间函数关系式为 y = -0.2x2+1.6x+1.8,则此运动员的成绩是____________m 3.若函数 图象与x 轴是只有 一个公共点,求m的值. 〖设计意图〗 学生通过例题解决,能较为熟练地掌握了用图象法法解一元二次方程,对二次函数与一元二次方程的关系有了更为深刻的认识,让学生体会了转化及数形结合的数学思想方法. 五、课堂练习 1、若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax2+bx+c的图象与x轴交点坐标是 。 2、抛物线y=0.5x2-x+3与x轴的交点情况是( ) A、两个交点 B、一个交点 C、没有交点 D、画出图象后才能说明 3、抛物线y=x2-4x+4与轴有 个交点,坐标是 、。 4、不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。 六、课堂小结 二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。 七.作业设计: 课后练习:P33 1,2,3,4 课本习题21.3 1~9 课后思考: 1、证明:抛物线y=x2-(2p-1)x+p2-p与x轴必有两个不同的交点。 2、(拓展练习)一元二次方程x2-4x+4=1的根与二次函数y=x2-4x+4的图象有什么关系?试把方程的根在图象上表示出来。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 一元 二次方程 课时 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文