用代入消元法解方程组.docx
《用代入消元法解方程组.docx》由会员分享,可在线阅读,更多相关《用代入消元法解方程组.docx(4页珍藏版)》请在咨信网上搜索。
8.2 消元——解二元一次方程组 第1课时 用代入消元法解方程组(教案) 学习目标: 1.会用代入法解二元一次方程组. 2.初步体会解二元一次方程组的基本思想——“消元”. 3、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和体会化归的思想. 预习导学: 自学指导:阅读教材第91至93页,回答下列问题: 自学反馈 1.方程5x-3y=7,变形可得x=,y=. 2.解方程组应消去y,把①代入②. 3.方程y=2x-3和方程3x+2y=1的公共解是 合作探究: 温故知新 把x+y=20写成y=20-x,叫做用含x的式子表示y的形式.写成x=20-y,叫做用含y的式子表示x的形式. 试一试: 1.用含x的代数式表示y:x+y=22 (y=22-x) 2.用含y的代数式表示x:2x-7y=8 (x=) 提出问题,探究方法 问题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分,这个队胜负场数分别是多少? 方法一:可列一元一次方程来解 解:设这个队胜了x场,则负了(22-x)场,由题意得 2x+(22-x)=40.(以下略) 方法二:可列二元一次方程组来解 解:设这个队胜了x场,负了y场,由题意得 (以下略) 这里所用的是将未知数的个数由多化少,逐一解决的想法——消元思想.具体是由x+y=22得y=22-x,再把y=22-x代人2x+y=40得2x+(22-x)=40,这样就消掉了一个未知数y,把原来的二元一次方程组就化为了我们熟悉的一元一次方程. 教师点拨:1.由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫代入消元法,简称代入法. 2.代入消元法的关键是用含一个未知数的代数式表示另一未知数. 例题解析 例1 用代入法解方程组: 解:由②得x=13-4y,③ 把③代入①,得2(13-4y)+3y=16, 解这个方程,得y=2. 把y=2代入③,得x=5. ∴原方程组的解是 思考;代入消元法解二元一次方程组的步骤 (1)变形:将其中一个方程中得某个未知数用含有另一个未知数的代数式表示出来; (2)代入:将将变形后的方程代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程; (3)求解:解出一元一次方程的解, (4)回代:再将其带入到原方程,或变形后的方程中求出另一个未知数的解,最后得出方程组的解; (5)结论:写出方程组的解; (6)验算:把解代入原方程组中口算检验是否正确。 探究: 将方程 代入方程 , 将方程 代入方程 ,消去未消去未知数 . 知数 . 思考:解上面的方程组中省略了哪一步?什么时候可以省略这一步? 将方程 变形得 , 将方程 变形得 , 代入方程 ,消去未知数 . 代入方程 ,消去未知数 . 思考:解方程时都用方程①变形吗? 3.用代入法解方程组时,最简单的方法是( ) A.先将①变形为x=y,再代入② B.先将①变形为y=x,再代入② C.先将②变形为x=,再代入① D.先将①变形为5y=2x,再代入② 当堂训练: 解下列二元一次方程组: (1) (2) 2、若方程5x 2m+n + 4y 3m-2n = 9是关于x,y的二元一次方程,求m ,n 的值. 答案见幻灯片 小结:这节课你学到了什么?- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 代入 消元法解 方程组
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文