《抛物线的简单几何性质》教学设计.doc
《《抛物线的简单几何性质》教学设计.doc》由会员分享,可在线阅读,更多相关《《抛物线的简单几何性质》教学设计.doc(5页珍藏版)》请在咨信网上搜索。
《抛物线的简单几何性质》教案 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ⅱ 训练学生分析问题、解决问题的能力,了解抛物线在实际问题中的初步应用。 3、学生情况 我授课的学生是省级重点中学的学生,大部分学生数学基础较好,但理解能力、运算能力、思维能力等方面参差不齐。 4、教学重点、难点 教学的重点是掌握抛物线的几何性质,使学生能根据给出的条件求出抛物线的标准方程和一些实际应用。 难点是抛物线各个知识点的灵活应用。 三 、教学方法及手段 采用引导式、讲练结合法;多媒体课件辅助教学。 四、教学程序 教 学 过 程 教学内容 教师导拨与学生活动 设计意图 一、知识回顾 1、 抛物线的定义:平面内与一个点F和一条定直线L的距离相等的点的轨迹叫做抛物线。点F→焦点,直线L→准线。 2、 抛物线的标准方程。 图形 标准方程 焦点坐标 准线方程 抛物线的定义及标准方程由学生口述,老师展示结论 提出这一问题的研究方法——对比、数形结合 二、引入课题 唐朝王翰在《凉州词》中有“葡萄美酒夜光杯,欲饮琵琶马上催”的句子,诗中提到“夜光杯”。 问题1:如果测得酒杯口宽4cm,杯深8cm, 试求抛物线方程。 解:如图建立平面直角坐标系, 则可知A(-2,8),B(2,8) 所以设抛物线的方程为: A、B点在抛物线上,代入抛 物线方程,可得P= , 则所求的抛物线方程为: 问题2:研究酒杯轴截面所在曲线的几何性质。 提出问题由学生完成,引导学生由“数学模型”到“数学问题”的解决问题的方法。并思考抛物线的几何性质。 通过诗句中的“夜光杯”模型引发学生探究问题本质的热情,同时巩固抛物线方程的知识并提出本节课的标题,起着承上启下的自然过度。 三、讲授新课 我们根据抛物线的标准方程 来研究它的几何性质。 1、 范围: 2、 对称性:关于x轴对称 抛物线的对称轴叫做抛物线的轴 3、 顶点:(0,0) 抛物线和它的轴的交点叫做抛物线的的顶点。 4、 离心率:e=1 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示。 标准 方程 图形 范围 对称 轴 关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称 顶点 (0,0) 离心率 e=1 补充说明:1、抛物线只位于半个平面坐标内,虽然他可以无限延伸但他没有渐近线。 2、 抛物线只有一条对称轴,没有对称中心 3、 抛物线只有一个顶点,一个焦点,一条准线 4、 抛物线的离心率是确定的且为1 问题:椭圆的圆扁程度、双曲线的张口大小由e的大小决定,那么抛物线的开口大小由什么决定? 通过类比椭圆与双曲线的几何性质,从范围、对称性、顶点、离心率方面研究抛物线 的几何性质,并由学生归纳总结出其他三种标准方程的几何性质。 从结论上去找出与椭圆和双曲线的几何性质的不同点 学生较易得出抛物线的范围、对称性、顶点、离心率等方面的几何性质,掌握类比研究问题的方法 培养学生具备“运动变化”和“动中求静”的辩证法的思维和观点 四、例题讲解 下面我们来看一例题 例1、 在同一坐标系中画出下列抛物线的草图: (1) (2) (3) (4) 结论:抛物线标准方程中的P越大,开口越开阔。 探究问题:在抛物线的标准方程中2p的几何意义? 通径的定义:通过焦点且垂直对称轴的直线与抛物线相交于两点,连接这两点的线段叫抛物线的通径。 通径的长度:2P 例2、 已知抛物线关于X轴对称,他的顶点在坐标原点,并且经过点M(2,),求他的坐标方程,并画出他的草图。 解:因为抛物线关于X轴对称,他的顶点在原点,并且经过点M(2,),所以可设他的标准方程为 因为点M在抛物线上,所以 即p=2 因此所求方程是 通过例1作图实践得出P对抛物线开口的影响并引导学生找出2P的几何意义。 例2巩固学生用所学的抛物线的几何性质去求抛物线的标准方程并根据通径去简化作抛物线的草图。 引导学生用所学知识解决实践问题 五、巩固练习 1、课本P122 1,3 六、小结和作业 1、 小结:抛物线的几何性质 2、 作业:习题8.6. 1 、3 教师引导师生共同总结教师给出 作业以落实教材为主,强化基础,巩固目标 板书设计 §8.6 抛物线的简单几何性质(一) 抛物线的 例题 练习 课时小结 几何性质- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线的简单几何性质 抛物线 简单 几何 性质 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文