【步步高】2014届高三数学一轮-1.2-命题及其关系、充分条件与必要条件课时检测-理-(含解析)北师大版.doc
《【步步高】2014届高三数学一轮-1.2-命题及其关系、充分条件与必要条件课时检测-理-(含解析)北师大版.doc》由会员分享,可在线阅读,更多相关《【步步高】2014届高三数学一轮-1.2-命题及其关系、充分条件与必要条件课时检测-理-(含解析)北师大版.doc(5页珍藏版)》请在咨信网上搜索。
1.2 命题及其关系、充分条件与必要条件 1.若a∈R,则“a=1”是“|a|=1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件 解析:若a=1,则有|a|=1是真命题,即a=1⇒|a|=1,由|a|=1可得a=±1,所以若|a|=1,则有a=1是假命题,即|a|=1⇒a=1不成立,所以a=1是|a|=1的充分而不必要条件. 答案:A 2.已知命题p:∃n∈N,2n>1 000,则綈p为( ). A.∀n∈N,2n≤1 000 B.∀n∈N,2n>1 000 C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000 解析 特称命题的否定是全称命题.即p:∃x∈M,p(x),则綈p:∀x∈M,綈p(x).故选A. 答案 A 3.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” 解析:原命题的逆命题是:若一个数的平方是正数,则它是负数. 答案:B 4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 (特例法)当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=<sin 60°=,故sin α>sin β不成立;当sin α>sin β时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件. 答案 D 【点评】 本题采用了特例法,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效. 5.与命题“若a∈M,则b∉M”等价的命题是( ) A.若a∉M,则b∉M B.若b∉M,则a∈M C.若a∉M,则b∈M D.若b∈M,则a∉M 解析:因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案:D 6 若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的( ). A.必要而不充分的条件 B.充分而不必要的条件 C.充要条件 D.既不充分也不必要的条件 解析 若φ(a,b)=0,即=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=-a-b=-b=0.故具备必要性.故选C. 答案 C 7.已知集合A={x∈R|<2x<8},B={x∈R|-1<x<m+1},若x∈B成立的一个充分不必要的条件是x∈A,则实数m的取值范围是( ) A.m≥2 B.m≤2 C.m>2 D.-2<m<2 解析:A={x∈R|<2x<8}={x|-1<x<3} ∵x∈B成立的一个充分不必要条件是x∈A ∴AB ∴m+1>3,即m>2. 答案:C 二、填空题 8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是________. 解析:x∉[2,5]且x∉{x|x<1或x>4}是真命题. 由得1≤x<2. 答案:[1,2) 9.已知p:“a=”,q:“直线x+y=0与圆x2+(y-a)2=1相切”,则p是q的________条件. 解析:由直线x+y=0与圆x2+(y-a)2=1相切得,圆心(0,a)到直线x+y=0的距离等于圆的半径,即有=1,a=±.因此,p是q的充分不必要条件. 答案:充分不必要 10.设p:|4x-3|≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是________. 解析 p:|4x-3|≤1⇔≤x≤1, q:(x-a)(x-a-1)≤0⇔a≤x≤a+1 由pq,得 解得:0≤a≤. 答案 11.已知a与b均为单位向量,其夹角为θ,有下列四个命题 p1:|a+b|>1⇔θ∈ p2:|a+b|>1⇔θ∈ p3:|a-b|>1⇔θ∈ p4:|a-b|>1⇔θ∈ 其中真命题的个数是____________. 解析 由|a+b|>1可得a2+2a·b+b2>1,因为|a|=1,|b|=1,所以a·b>-,故θ∈.当θ∈时,a·b>-,|a+b|2=a2+2a·b+b2>1,即|a+b|>1,故p1正确.由|a-b|>1可得a2-2a·b+b2>1,因为|a|=1,|b|=1,所以a·b<,故θ∈,反之也成立,p4正确. 答案 2 12.给出下列命题: ①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真; ③一个命题的逆命题为真,它的否命题一定为真; ④一个命题的逆否命题为真,它的否命题一定为真; ⑤“若m>1,则mx2-2(m+1)x+m+3>0的解集为R”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上) 解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx2-2(m+1)x+m+3>0的解集为R, 由⇒⇒m>1. 故⑤正确. 答案:②③⑤ 三、解答题 13.写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并判断它们的真假. 解析:(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题. (2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0没有非空解集,则a2<4b,为真命题. (3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0没有非空解集,为真命题. 14.求方程ax2+2x+1=0的实数根中有且只有一个负实数根的充要条件. 解析:方程ax2+2x+1=0有且仅有一负根. 当a=0时,x=-适合条件. 当a≠0时,方程ax2+2x+1=0有实根, 则Δ=4-4a≥0,∴a≤1, 当a=1时,方程有一负根x=-1. 当a<1时,若方程有且仅有一负根,则x1x2=<0, ∴a<0. 综上,方程ax2+2x+1=0有且仅有一负实数根的充要条件为a≤0或a=1. 15.已知命题p:命题q:1-m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围. 解析:p:x∈[-2,10],q:x∈[1-m,1+m],m>0, ∵¬p是¬q的必要不充分条件,∴p⇒q且qp. ∴[-2,10][1-m,1+m]. ∴∴m≥9. 16.已知全集U=R,非空集合A={x|<0},B={x|<0}. (1)当a=时,求(∁UB)∩A; (2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围. 解析:(1)当a=时,A={x|2<x<}, B={x|<x<}, ∁UB={x|x≤或x≥}, (∁UB)∩A={x|≤x<}. (2)若q是p的必要条件,即p⇒q,可知A⊆B, 由a2+2>a,得B={x|a<x<a2+2}, 当3a+1>2,即a>时,A={x|2<x<3a+1}, ,解得<a≤; 当3a+1=2,即a=时,A=Ø,符合题意; 当3a+1<2,即a<时,A={x|3a+1<x<2}. ,解得-≤a<; 综上,a∈[-,]. 5- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 2014 届高三 数学 一轮 1.2 命题 及其 关系 充分 条件 必要条件 课时 检测 解析 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【步步高】2014届高三数学一轮-1.2-命题及其关系、充分条件与必要条件课时检测-理-(含解析)北师大版.doc
链接地址:https://www.zixin.com.cn/doc/7243015.html
链接地址:https://www.zixin.com.cn/doc/7243015.html