直线与圆.doc
《直线与圆.doc》由会员分享,可在线阅读,更多相关《直线与圆.doc(6页珍藏版)》请在咨信网上搜索。
直线与圆 1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( ) A.内切 B.相交 C.外切 D.相离 【解析】 两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距离为=,则R-r<<R+r,所以两圆相交. 【答案】 B 2.(2013·广东高考)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( ) A.x+y-=0 B.x+y+1=0 C.x+y-1=0 D.x+y+=0 【解析】 与直线y=x+1垂直的直线方程可设为x+y+b=0,由x+y+b=0与圆x2+y2=1相切,可得=1,故b=±.因为直线与圆相切于第一象限,故结合图形分析知b=-,故直线方程为x+y-=0,故选A. 【答案】 A 3.(2013·济南调研)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为( ) A.(x-1)2+y2= B.x2+(y-1)2= C.(x-1)2+y2=1 D.x2+(y-1)2=1 【解析】 因为抛物线y2=4x的焦点坐标为(1,0), ∴a=1,b=0. 又根据r==1, ∴圆的方程为(x-1)2+y2=1. 【答案】 C 4.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是( ) A.10 B.20 C.30 D.40 【解析】 配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦|AC|=2r=10,最短弦|BD|=2=4,且有AC⊥BD,则四边形ABCD的面积为S=|AC|×|BD|=20. 【答案】 B 5.(2013·江西高考)过点(,0)引直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于( ) A. B.- C.± D.- 【解析】 由于y=,即x2+y2=1(y≥0),直线l与x2+y2=1(y≥0)交于A,B两点,如图所示,S△AOB=·sin ∠AOB≤,且当∠AOB=90°时,S△AOB取得最大值,此时AB=,点O到直线l的距离为,则∠OCB=30°,所以直线l的倾斜角为150°,则斜率为-. 【答案】 B 二、填空题 6.(2013·浙江高考)直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于__________. 【解析】 圆的方程可化为(x-3)2+(y-4)2=25,故圆心为(3,4),半径r=5.又直线方程为2x-y+3=0,所以圆心到直线的距离为d==,所以弦长为2 =2×=2=4 . 【答案】 4 7.(2013·湖北高考)已知圆O:x2+y2=5,直线l:xcos θ+ysin θ=.设圆O上到直线l的距离等于1的点的个数为k,则k=________. 【解析】 ∵圆心(0,0)到直线的距离为1,又∵圆O的半径为,故圆上有4个点符合条件. 【答案】 4 8.设圆x2+y2=2的切线l与x轴的正半轴、y轴的正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为________. 【解析】 设切线l方程为+=1,因为l与圆相切,则圆心(0,0)到l的距离d==, 即+=,|AB|2=a2+b2=2(a2+b2)·=2≥8. 当且仅当a=b时等号成立,解得a=b=2,所以x+y=2. 【答案】 x+y=2 三、解答题 9.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|. (1)若点P的轨迹为曲线C,求此曲线的方程; (2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值. 【解】 (1)设点P的坐标为(x,y),且|PA|=2|PB|. 则=2. 化简得曲线C:(x-5)2+y2=16. (2)曲线C是以点(5,0)为圆心,4为半径的圆,如图. 由直线l2是此圆的切线,连接CQ, 则|QM|==, 当CQ⊥l1时,|CQ|取最小值,|CQ|==4,此时|QM|的最小值为=4. 10.在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上. (1)求圆C的方程; (2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值. 【解】 (1)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3-2,0). 故可设C的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1. 则圆C的半径为=3. 所以圆C的方程为(x-3)2+(y-1)2=9. (2)设A(x1,y1),B(x2,y2),其坐标满足方程组 消去y,得方程2x2+(2a-8)x+a2-2a+1=0. 由已知可得,判别式Δ=56-16a-4a2>0. 因此x1,2=, 从而x1+x2=4-a,x1x2=.① 由于OA⊥OB,可得x1x2+y1y2=0. 又y1=x1+a,y2=x2+a, 所以2x1x2+a(x1+x2)+a2=0.② 由①②得a=-1,满足Δ>0,故a=-1. 11. (2012·福州模拟)已知过点A(-1,0)的动直线l与圆C:x2+(y-3)2=4相交于P,Q两点,M是PQ的中点,l与直线m:x+3y+6=0相交于N. 图5-1-1 (1)求证:当l与m垂直时,l必过圆心C; (2)当|PQ|=2时,求直线l的方程; (3)探索·是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由. 【解】 (1)证明 ∵l与m垂直,且km=-,∴kl=3, 故直线l的方程为y=3(x+1),即3x-y+3=0. ∵圆心坐标为(0,3)满足直线l方程, ∴当l与m垂直时,l必过圆心C. (2)当直线l与x轴垂直时,易知x=-1符合题意. 当直线l与x轴不垂直时, 设直线l的方程为y=k(x+1),即kx-y+k=0, ∵PQ=2,∴CM==1, 则由CM==1,得k=, ∴直线l:4x-3y+4=0. 故直线l的方程为x=-1或4x-3y+4=0. (3)∵CM⊥MN,∴·=(+)·=·+·=·. 当l与x轴垂直时,易得N(-1,-),则=(0,-),又=(1,3), ∴·=·=-5. 当l的斜率存在时,设直线l的方程为y=k(x+1), 则由得N(,),则=(,), ∴·=·=+=-5, 综上所述,·与直线l的斜率无关,且·=-5.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文