离散数学课后习题答案(第三章).doc
《离散数学课后习题答案(第三章).doc》由会员分享,可在线阅读,更多相关《离散数学课后习题答案(第三章).doc(10页珍藏版)》请在咨信网上搜索。
证明 :设A上定义得二元关系R为: <<x,y>, <u,v>>∈RÛ= ① 对任意<x,y>∈A,因为=,所以 <<x,y>, <x,y>>∈R 即R就是自反得。 ② 设<x,y>∈A,<u,v>∈A,若 <<x,y>, <u,v>>∈RÞ=Þ=Þ<<u,v>,<x,y>>∈R 即R就是对称得。 ③ 设任意<x,y>∈A,<u,v>∈A,<w,s>∈A,对 <<x,y>, <u,v>>∈R∧<<u,v>, <w,s>>∈R Þ(=)∧(=)Þ= Þ<<x,y>, <w,s>>∈R 故R就是传递得,于就是R就是A上得等价关系。 3-10、6 设R就是集合A 上得对称与传递关系,证明如果对于A中得每一个元素a,在A中同时也存在b,使<a,b>在R之中,则R就是一个等价关系。 证明 :对任意a∈A,必存在一个b∈A,使得<a,b>∈R、 因为R就是传递得与对称得,故有: <a,b>∈R∧<b, c>∈RÞ<a, c>∈RÞ<c,a>∈R 由<a,c>∈R∧<c, a>∈RÞ<a,a>∈R 所以R在A上就是自反得,即R就是A上得等价关系。 3-10、7 设R1与R2就是非空集合A上得等价关系,试确定下述各式,哪些就是A上得等价关系,对不就是得式子,提供反例证明。 a)(A×A)-R1; b)R1-R2; c)R12; d) r(R1-R2)(即R1-R2得自反闭包)。 解 a)(A×A)-R1不就是A上等价关系。例如: A={a,b},R1={<a,a>,<b,b>} A×A={<a,a>,<a,b>,<b,a>,<b,b>} (A×A)-R1={<a,b>,<b,a>} 所以(A×A)-R1不就是A上等价关系。 b)设 A={a,b,c} R1={<a,b>,<b,a>,<b,c>,<c,b>,<a,c>,<c,a>,<a,a>,<b,b>,<c,c>} R2={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>} R1-R2={<a,b>,<b,a>,<a,c>,<c,a>} 所以R1与R2就是A上等价关系,但R1-R2不就是A上等价关系。 c)若R1就是A上等价关系,则 <a,a>∈R1Þ<a,a>∈R1○R1 所以R12就是A上自反得。 若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有 <b, c>∈R1∧<c,a>∈R1Þ<b, a>∈R12 即R12就是对称得。 若<a,b>∈R12∧<b, c>∈R12,则有 <a,b>∈R1○R1∧<b, c>∈R1○R1 Þ($e1)(<a, e1>∈R1∧<e1, b>∈R1) ∧($e2)(<b, e2>∈R1∧<e2, c>∈R1) Þ<a,b>∈R1∧<b, c>∈R1(∵R1传递) Þ<a,c>∈R12 即R12就是传递得。 故R12就是A上得等价关系。 d)如b)所设,R1与R2就是A上得等价关系,但 r(R1-R2)=(R1-R2)∪IA ={<a,b>, <b,a>, <a,c>,<c,a>,<a,a>,<b,b>, <c,c>} 不就是A上得等价关系。 3-10、8 设C*就是实数部分非零得全体复数组成得集合,C*上得关系R定义为:(a+bi)R(c+di)Ûac>0,证明R就是等价关系,并给出关系R得等价类得几何说明。 证明:(1)对任意非零实数a,有a2>0Û(a+bi)R(a+bi) 故R在C*上就是自反得。 (2) 对任意(a+bi)R(c+di)Ûac>0, 因ca=ac>0Û(c+di)R(a+bi), 所以R在C*上就是对称得。 (3)设(a+bi)R(c+di) ,(c+di)R(u+vi),则有ac>0Ùcu>0 若c>0,则a>0Ùu>0Þ au>0 若c<0,则a<0Ùu<0Þ au>0 所以(a+bi)R(u+vi),即R在C*上就是传递得。 关系R得等价类,就就是复数平面上第一、四象限上得点,或第二、三象限上得点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。 3-10、9 设Π与Π¢就是非空集合A上得划分,并设R与R¢分别为由Π与Π¢诱导得等价关系,那么Π¢细分Π得充要条件就是R¢ Í R。 证明:若Π¢细分Π。由假设aR¢b,则在Π¢中有某个块S¢,使得a,b∈S¢,因Π¢细分Π,故在Π中,必有某个块S,使S¢Í S,即a,b∈S,于就是有aRb,即R¢ Í R。 反之,若R¢ Í R,令S¢为H¢得一个分块,且a∈S¢,则S¢=[a]R¢={x|xR¢a} 但对每一个x,若xR¢a,因R¢ Í R,故xRa,因此{x|xR¢a} Í{x|xRa}即[a]R¢ Í[a]R 设S=[a]R,则S¢Í S 这就证明了Π¢细分Π。 3-10、10 设Rj就是表示I上得模j等价关系,Rk就是表示I上得模k等价关系,证明I/Rk细分I/Rj当且仅当k就是j得整数倍。 证明:由题设Rj={<x,y>|x≡y(modj)} Rk={<x,y>|x≡y(modk)} 故<x,y>∈RjÛx-y=c×j (对某个c∈I) <x,y>∈RkÛx-y=d×k (对某个d∈I) a)假设I/Rk细分I/Rj,则Rk Í Rj 因此<k,0>∈RkÞ<k,0>∈Rj 故k-0=1×k=c×j (对某个c∈I) 于就是k就是j得整数倍。 b)若对于某个r∈I,有k=rj则: <x,y>∈RkÛx-y=ck (对某个c∈I) Þ x-y=crj (对某个c,r∈I) Þ<x,y>∈Rj 因此,Rk Í Rj,于就是I/Rk细分I/Rj fjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgao- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 课后 习题 答案 第三
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文