信息类专业英语翻译.doc
《信息类专业英语翻译.doc》由会员分享,可在线阅读,更多相关《信息类专业英语翻译.doc(28页珍藏版)》请在咨信网上搜索。
Dynamic topology: As the channel of communicationchanges, some of the neighbors who were reachable on theprevious channel might not be reachable on the currentchannel and vice versa. As a result the topology of the network changes with the change in frequency of operation resulting in route failures and packet loss. Heterogeneity: Different channels may support differenttransmission ranges, data rates and delay characteristics. Spectrum-Handoff delay: For each transition from onechannel to another channel due to the PU’s activity, thereis a delay involved in the transition called Spectrum- Handoff delay. All these factors decrease the predictability of the cause of transit-delay and subsequent packet loss on the network. The time latency during channel hand-off in cognitive networks might cause the TCP round trip timer to time out. TCP will wrongly recognize the delays and losses due to the above factors as network congestion and immediately take steps to reduce the congestion window size knowing not the cause of packet delay. This reduces the efficiency of the protocol in such environments. 动态技术: 随着信道通信的变化,一些邻进信道的用户在原信道没有发生变化而在新信道发生变化,或者相反。随着操作频段的变化,网络的拓扑结构发生变化导致路由失败和丢包。 异构: 不同的信道支持不同的传输范围,传输速率,延迟特点。 频谱切换延迟: 由于主用户的出现,每个从一个信道切换到另一个信道,在过渡中,一种延迟被包括叫做频谱切换延迟。 所有因素减少了在网络中,传输延迟和随后丢包的原因的预测性。在认知网络的信道切换过程中潜在的时间引起TCP的RTT的超时。TCP错误的认为延迟和丢包由于以上因素比如网络拥塞和立刻采取减少拥塞窗口大小,而不知道包延迟的原因。这些降低协议在这样环境的效率。 Throughput maximization is one of the main challenges in cognitive radio ad hoc networks, where the availability of local spectrum resources may change from time to time and hop by hop. For this reason, a cross-layer opportunistic spectrum access and dynamic routing algorithm for cognitive radio networks is proposed, which is called the routing and dynamic spectrum allocation (ROSA) algorithm. Through local control actions, ROSA aims to maximize the network throughput by performing joint routing, dynamic spectrum allocation, scheduling, and transmit power control. Specifically, the algorithm dynamically allocates spectrum resources to maximize the capacity of links without generating harmful interference to other users while guaranteeing a bounded bit error rate (BER) for the receiver. In addition, the algorithm aims to maximize the weighted sum of differential backlogs to stabilize the system by giving priority to higher capacity links with a high differential backlog. The proposed algorithm is distributed, computationally efficient, and has bounded BER guarantees. ROSA is shown through numerical model-based evaluation and discrete-event packet-level simulations to outperform baseline solutions, leading to a high throughput, low delay, and fair bandwidth allocation 在认知ad hoc网络中,吞吐量最大化是重要挑战之一,随着时间和跳数的变化当地的频谱资源的可用性发生变化。考虑这些原因,提出了认知网络的跨层机会频谱接入和动态路由算法,叫做路由动态频谱分配算法ROSA。通过当地的控制作用,ROSA通过实行共同路由、动态频谱分配、时序安排传输功率控制,目的在于最大化网络吞吐量。具体的就是,没有产生有害的干扰对其他用户保证接收方在一定限制的无比特率,动态算法分配频谱资源来最大化链路容量。另外,算法通过认为带有高不同的累积有比较高的链路容量,目的在于最大化不同累积的加权和来稳定系统。提出的算法是分布式的,计算效率高,保证限定误比特率。 通过基于模型的数值估计展示ROSA和时间分离包数量仿真胜过基本解决方法,得到一个高吞吐量,低时延,公平的带宽分配。 Cognitive radio is considered as one of the main enablers for provisioning dynamic and flexible spectrum/channel allocation in wireless communications. On the other hand several physical layer mechanisms such as adaptive modulation, multiple-input multiple output systems, advanced channel coding and/or combinations of them enhance the capacity of wireless networks. However little effort has been put till now in studying the performance gains of physical layer mechanisms with the presence of cognition capabilities. The incorporation of cognitive mechanisms demands more detailed studies for assessing the impact on the spectral efficiency. To this direction, cross-layer combination of such a physical layer with upper layers should be also considered as a case study in a cognitive wireless environment. In this work we present a study on the spectral efficiency of adaptive modulation and coding which is one of the most promising schemes of applying cognitive radio at the physical layer. Besides, we study a cross-layer combination of adaptive modulation with upper layers in the same cognitive context. We prove that the performance gain of cognitive radio over such a physical layer is not negligible. 认知无线电所能提供的主要能力之一是在无线通信中,提供动态的灵活的频谱信道分配。另一方面几种物理层机制像适应性调制,多输入多输出系统,先进的信道译码和结合他们增强无线网络容量。然而直到现在,在研究带有存在认知能力的物理层机制增加的性能当中,提出很少的成果。认知机制的结合要求较多的详细的研究对频谱效率的影响。朝着这个方向,和上层的物理层的跨层结合可以被看作个案研究在认知无线环境。在这个工作中,我们提出一个研究适应性的调制解调的频谱效率,他是在物理层应用认知无线电最有希望的策略之一。并且我们研究带有上层的适应性调制解调的跨层结合在相同认知背景。我们证明了在这些的物理层上的认知无线电增加的性能不是忽略不计的。 Abstract—Congestion control in wireless multi-hop networks is challenging and complicated because of two reasons. First, interference is ubiquitous and causes loss in the shared medium. Second, wireless multihop networks are characterized by the use of diverse and dynamically changing routing paths. Traditional end point based congestion control protocols are ineffective in such a setting resulting in unfairness and starvation. This paper adapts the optimal theoretical work of Tassiulas and Ephremedes [33] on cross-layer optimization of wireless networks involving congestion control, routing and scheduling, for practical solutions to congestion control in multi-hop wireless networks. This work is the first that implements in real off-shelf radios, a differential backlog based MAC scheduling and router-assisted backpressure congestion control for multi-hop wireless networks. Our adaptation, called DiffQ, is implemented between transport and IP and supports legacy TCP and UDP applications. In a network of 46 IEEE 802.11 wireless nodes, we demonstrate that DiffQ far outperforms many previously proposed “practical” solutions for congestion control. 在无线多跳网络中,拥塞控制是有挑战的和复杂的。原因有两点如下:第一,干扰是普遍的和丢包的原因是共享媒介。第二,无线多跳网络的特征是多用户,动态改变路由路径。传统的以指向终端为基础的拥塞控制协议在这样的设施导致不公平和饥饿是无效的。 Abstract—Cognitive radio (CR) technology can achieve higher spectrum efficiency by exploring the unused spectrum in licensed band. Most of the existing work focuses on maximizing the spectrum utilization but ignores the immediate influence from primary users to network throughput. In this paper, we investigate the importance of planned link restoration in cognitive radio networks. We formulate the link restoration problem as an integer programming problem. By considering both channel assignment and interference between links, the link throughput can be guaranteed even when primary users appear, and therefore can provide the needed reliability for real-time wireless applications. We consider a link failure model which captures the induced link failures from multiple primary users operating on one frequency channel. Under this failure model, our algorithm explores the sharing of backup capacity. We compare our algorithm to two baseline restoration schemes. Our algorithm performs very well in terms of capacity usage and throughput reliability. 通过在受权频段中扫描空闲频段,cr技术可以到达比较高的频谱效率。大部分的工作在于最大化频谱利用率而忽视了立即的从主用户的影响对网络吞吐量。在本文,我们调查cr网络中计划链路恢复的重要性。我们系统阐述链路恢复问题作为整体规划问题。通过分析信道分配和链路之间的干扰,即使主用户出现,链路的吞吐量可以被保证,因此能够提供可靠地实时的无线应用。我们认为链路失败模型,它可以从多个主用户使用在频段上捕获诱发的链路故障。在这个失败模型下,我们的算法探索共享备用容量。 In this paper, we investigated the end-to-end throughput of a chain in Cognitive Radio Networks (CRNs). We found that, the end-to-end throughput is dependant on both the primary usage patterns and the transmission scheduling scheme being used. In addition, to increase the end-to-end throughput of a Cognitive Radio (CR) chain, the scheduling scheme should be adjusted according to the primary usage patterns of the CR links in the chain. In the paper, firstly, we proposed an algorithm to approximate the achievable end-to-end throughput considering the primary usage patterns by abstraction and iteration. Then, a novel layered packets transmission scheduling scheme was proposed in attempt to realize the approximated end-to-end throughput. Finally, extensive simulations were conducted and results showed that, using proposed transmission scheduling scheme, the achievable end-to-end throughput of a CR chain is increased by considering the primary usage patterns and the final end-to-end throughput is close to the approximation 在本文,我们调查了CRNs链中,点对点的吞吐量。我们发现对对点的吞吐量取决去主用户的使用方式和所采用的传输时序安排策略。另外,为了增加cr链的点对点的吞吐量。根据cr链的主用户的使用方式,时序安排策略被调整。在本文,首先,我们通过提取和反复考虑考虑主用户的方式,提出一个算法来接近可到达的点对点的吞吐量。 Spectrum Handoff in Cognitive Radio Networks: Opportunistic and Negotiated Situations Spectrum handoff is an indispensable component in cognitive radio networks to provide resilient service for the secondary users. In this paper, we explore the spectrum handoff procedure and then propose four metrics to characterize both short-term and long-term spectrum handoff performance: link maintenance probability, the number of spectrum handoff, switching delay, and non-completion probability. In particular, the probability mass function (pmf) and the average number of spectrum handoff are developed. The tele-traffic parameters are relaxed to follow a general distribution function, which will enable a wide applicability and theoretical significance of the derived formulae. Both opportunistic and negotiated spectrum access strategies are investigated. Results show that these two mechanisms will generate significantly different performance. Numerical examples are presented to demonstrate the performance trade-off and the interaction between the primary users and the secondary users. The impact of key parameters on spectrum handoff is also discussed. The techniques as well as the results are important for evaluating the primary and second users co-existence, and hence helpful for design and optimization of cognitive radio networks. 在CR网络中,频谱切换是必不可少的组成来提供适应性的服务为次用户。在本文中,我们探索频谱切换过程和提出四个公制的为特性分短期长期频谱切换性能:;链路维持概率,频谱切换数量,切换延时,切换失败概率。具体的,发展了概率分布函数和平均切换函数。tele-traffic 参数是随机的服从一般分布函数,它提供广泛的应用性的和推导出系统阐述的理论上的重大意义。调查机会主义的和协商的频谱接入策略。结果显示两个机制会产生董大不同的性能。 In cognitive radio networks (CRNs), the traditional notion is to terminate the secondary communication upon the return of the primary users. Even though the spectrum handoff technology is adopted, a long time delay to the cognitive communication is unavoidable. And the problem of the hand off delay is not to be solved without the innovation of the hardware in communication systems. In our paper, we aim at the real-time spectrum handoff in the view of the spectrum sensing. We proposed two distinguished modules, the second receiver and the spectrum pool, to support the real-time handoff. In the sensing selection, we propose the necessity of re-sensing (sensing again) to determine the sensing band. And the model-based prediction is also adopted in the paper. From the computer simulation under different SNR and different primary traffic rate, we can see that the proposed spectrum handoff scheme outperforms the non-real time scheme. 在CRNs中,传统的观念是终止次用户的通信在主用户返回时。即使频谱切换技术被采纳,认知网络的长期的延迟是不可避免的。没有通信系统硬件的革新,切换延迟是不可能被解决的。在本文中,从频谱感知的角度看,我们的目的在于实时的频谱切换。我们提出两个不同的模型,次用户接收方和频谱池,来支持实时切换,在感知的选择上,我们提出再次感知的必要性来决定感知带宽。在本文,基本的模型预测被提出。在不同的SNR和主用户传输速率从仿真结果看,提出提出的频谱切换策略优于非实时的策略。 TP-CRAHN: A Transport Protocol for Cognitive Radio Ad-hoc NetworksExisting research in transport protocols for wireless ad-hoc networks has focused on reliable end-to-end packet delivery under uncertain channel conditions, route failures due to node mobility and link congestion. In a cognitive radio (CR) environment, there are several key challenges that must be addressed apart from the above concerns. The intermittent spectrum sensing undertaken by the CR users, the activity of the licensed users of the spectrum, large-scale bandwidth variation based on spectrum availability, and the channel switching process need to be considered in the transport protocol design. In this paper, a window-based Transport Protocol for CR Ad-Hoc Networks, TP-CRAHN, is proposed that distinguishes each of these events by a combination of explicit feedback from the intermediate nodes and the destination. This is achieved by adapting the classical TCP rate control algorithm running at the source to closely interact with the physical layer channel information, the link layer functions of spectrum sensing and buffer management, and a predictive mobility framework that is developed at the network layer. To the best of our knowledge, this is the first work on the transport layer to specifically address the concerns of the CR ad-hoc networks and our approach is thoroughly validated by simulation experiments. 目前的研究在无线ad-hoc网络的传输层集中在于点对点的包传递 在不确定的信道条件路由失败由于节点移动和链路拥塞。在cr网络环境下,除了以上的几个还有几个关键的挑战,次用户进行间隔的频谱感知,主用户在频谱的活跃程度,基于频谱可用性的大范围的带宽变化 ,信道转变过程需要被考虑在设计传输层协议。。在本文基于窗口的CR Ad-Hoc网络的传输层协议TP-CRAHN,,被提出:通过结合准确的反馈从中间节点和目的节点,它可以区别每个事件,这是高度完美的通过经典TCP速率控制算法运行在原节点相互作用在物理层信道信息,频谱感知的链路层函数和缓冲管理,一个预言性的移动框架:是发展的在网络层。 A Markov chain analysis for spectrum access in licensed bands for cognitive radios is presented and forced termination probability, blocking probability and traffic throughput are derived. In addition, a channel reservation scheme for cognitive radio spectrum handoff is proposed. This scheme allows the tradeoff between forced termination and blocking according to QoS requirements. Numerical results show that the proposed scheme can greatly reduce forced termination probability at a slight increase in blocking probability. 在认知无线电的授权频段Markov链分析频谱接入被提到,影响终止概率,阻塞概率和传输吞吐量。另外信道预留策略用在认知无线电的频谱切换被提出。根据服务质量,这些策略权衡强制中断和阻塞,数字的结果展示提出的策略大大减少强制中断的概率,微微增加阻塞概率。 On the Performance of Spectrum Handoff for Link Maintenance in Cognitive Radio Cognitive radio (CR) has the potential for resolving the spectrum scarcity issue in wireless communications. A CR device can establish unharmful links in the spectrum of the legacy system. Among many enabling functions for CR, spectrum handoff can restore CR’s connection when the primary user appears in the occupied channel. In this paper, we study three types of spectrum handoff for the link maintenance: (1) nonspectrum handoff method, (2) the pre-determined channel list spectrum handoff, and (3) the spectrum handoff based on radio sensing scheme. We examine the performances of the three mechanisms in terms of the link maintenance probability and the effective data rate of the secondary user’s transmission. Our numerical results show that erroneous channel selection probability, radio sensing time and the number of handoff trials are important for spectrum handoff schemes. We also provide the design guideline for these parameters CR能够解决无线通信中的频谱稀缺问题。一个CR设备能建立无害的链路在合法系统的频谱。他们当中许多能够提供CR功能。当主用户返回授权频段时,频谱切换可以恢复cr链接。在本文,我们研究三种频谱切换策略为了链路维护1无频谱切换方法2预先决定的信道切换列表3频谱切换基于无线电感知策略。从链路维持的可能性和次用户传输的有效速率,我们检验三种机制的性能。我们的数字结果 显示错误的信道选择的,无线感知时间,切换次数的检验时是重要的对频谱切换 Fuzzy-based Spectrum Handoff in Cognitive Radio Networks This paper focuses on spectrum handoffs in a cognitive radio network where secondary (unlisenced) u- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息 类专业 英语翻译
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文