“一对一辅导”指导方案(七年级数学).doc
《“一对一辅导”指导方案(七年级数学).doc》由会员分享,可在线阅读,更多相关《“一对一辅导”指导方案(七年级数学).doc(14页珍藏版)》请在咨信网上搜索。
上名校 做大事 “一对一辅导”指导方案 测评时间_________ 测评地点 佳福大厦1902室 测评老师 陈 娟 Ø 概述: xxx同学,七年级学生,就读于xx学校,最近一次数学考试为xx分,成绩比较稳定,长期以来数学学科一直是制约其总成绩提升的最大障碍,经过咨询老师、学科老师、心理老师三方会诊,对xxx同学的数学学习问题进行了详细的测试和分析,得出本次方案。 Ø 测评结果: 经过测试,xxx同学数学存在的问题具体如下: ² 基础知识点:经过测试,xxx同学基础知识点掌握较好,但在具体的应用方面存在不足,不能够熟练应用; ² 做题效率:做题速度较慢,思考的时间较长,这和基础知识点的掌握以及做题的方法技巧有关,且做题时教粗心,计算题错误率较高; ² 答题技巧:没有什么答题技巧 ² 学习习惯:一般 Ø 指导方案: 根据以上测评结果,结合学科老师、咨询老师、心理老师等各方面的意见特制订本辅导方案。本方案共分两部分: 第一部分七年级上册分为3个阶段(共47课时): 说明:此课时安排适用于中等学生,优等生的课时安排按实际情况而定,每阶段的课时可以压缩课时到10课时左右。后进生课时需增加4到6课时供巩固提高用。 第一阶段:暑假7月1日—7月16日 共16个课时; 阶段课时知识点概括如下: 第二章 有理数 §2.1 正数和负数§2.2 数轴 §2.3 相反数§2.4 绝对值 §2.5 有理数的大小比较 §2.6 有理数的加法 §2.7 有理数的减法 §2.8 有理数的加减法混合运算 §2.9 有理数的乘法§2.10有理数的除法 §2.11有理数的乘方§2.12科学记数法 §2.13有理数的混合运算§2.14近似数和有效数字 §2.15用计算器进行数的简单运算 总结与复习 第三章 用字母表示数 3.1字母表示数 3.2代数式 3.3代数式的值 3.4合并同类项 3.5去括号 总结与复习 具体安排如下: 第1课时:《有理数》§2.1 正数和负数§2.2 数轴§2.5 有理数的大小比较 本课时中认识负数部分是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且学习数轴、相反数、绝对值以及有理数运算的基础。接着是学习数轴,再对数轴的作用——比较有理数大小进一步理解数轴。 正数与负数:⒈正数和负数的概念 2.具有相反意义的量 3.0表示的意义 有理数: 1.有理数的概念 2.有理数的分类 ⑴按有理数的意义分类 ⑵按正、负来分 正整数 正整数 整数 0 正有理数 负整数 正分数 有理数 有理数 0 (0不能忽视) 正分数 负整数 分数 负有理数 负分数 负分数 数轴: ⒈数轴的概念 2.数轴上的点与有理数的关系 3.利用数轴表示两数大小 4.数轴上特殊的最大(小)数 5.a可以表示什么数 6.数轴上点的移动规律 第2课时:《有理数》§2.3 相反数§2.4 绝对值 相反数及绝对值在本章里除有理数混合运算尤其重要。增加的一个常考的知识点:非负数的性质。与数轴结合一起理解是学生比较难掌握的部分。 相反数 ⒈相反数 2.相反数的性质与判定 3.相反数的几何意义 4.相反数的求法 5.相反数的表示方法 6.多重符号的化简 绝对值 ⒈绝对值的几何定义 2.绝对值的代数定义 3.绝对值的性质 4.有理数大小的比较 5.绝对值的化简 6.已知一个数的绝对值,求这个数 第3课时:《有理数》§2.6 有理数的加法§2.7 有理数的减法 §2.8 有理数的加减法混合运算 有理数的加减法 1.有理数的加法法则 2.有理数加法的运算律 3.加法性质 4.有理数减法法则 5.有理数加减法统一成加法的意义 6.有理数加减混合运算中运用结合律时的一些技巧: Ⅰ.把符号相同的加数相结合(同号结合法) Ⅱ.把和为整数的加数相结合 (凑整法) Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合) Ⅴ.把带分数拆分后再结合(先拆分后结合) Ⅵ.分组结合 Ⅶ.先拆项后结合 第4课时:《有理数》§2.9 有理数的乘法§2.10有理数的除法 有理数的乘除法 1.有理数的乘法法则 2.倒数 3.有理数的乘法运算律 4.有理数的除法法则 5.有理数的乘除混合运算 第5课时:《有理数》§2.11有理数的乘方§2.12科学记数法 有理数的乘方 1.乘方的概念 2.乘方的性质 科学记数法 把一个大于10的数表示成 的形式(其中, n是正整数),这种记数法是科学记数法。 第6课时:《有理数》§2.13有理数的混合运算§2.14近似数和有效数字 §2.15用计算器进行数的简单运算 有理数的混合运算 做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。 第7课时:《有理数》总结与复习 第8课时:《有理数》单元测试与讲解 第9课时:《用字母表示数》字母表示数 第10课时:《用字母表示数》代数式 代数式 代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。单独的一个数或一个字母也是代数式。 单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。 单项式的系数:单项式中的数字因数 单项式的次数:一个单项式中,所有字母的指数和 第11课时:《用字母表示数》代数式 多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。 多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。 整式:单项式和多项式统称为整式。 补充—— 分式:分母上含有字母的代数式。 代数式书写规范: 第12课时:《用字母表示数》代数式的值 整式的加减 整式加减的步骤 第13课时:《用字母表示数》合并同类项 合并同类项 同类项的概念 合并同类项的法则 合并同类项的步骤 第14课时:《用字母表示数》去括号 去括号的法则 第15课时:《用字母表示数》小结与复习 第16课时:《用字母表示数》单元测试与讲解 晚自习或双休日安排时间进行这两章的水平测试,成绩进入档案。 第二阶段:暑假7月17日—7月31日 共15个课时; 阶段课时知识点概括如下: 第四章 一元一次方程 §4.1 从问题到方程 §4.2 解一元一次方程 §4.3 用方程解决问题 第五章 走进图形世界 5.1 丰富的图形世界 5.2 图形的变化 5.3 展开与折叠 5.4 从三个方向看 具体安排如下: 第1课时:《一元一次方程》从问题到方程 一元一次方程的概念 第2课时:《一元一次方程》解一元一次方程 解一元一次方程 方程的解;解方程;等式的性质;移项(移项的依据、移项的作用); 解一元一次方程的一般步骤 第3课时:用方程解决问题(1) 1.列一元一次方程解应用题的基本步骤 2.关键在于抓住问题中的有关数量的相等关系,列出方程。 3.解决问题的策略:利用表格和示意图帮助分析实际问题中的数量关系 第4课时:用方程解决问题(2) 实际问题的常见类型: 行程问题:路程=时间×速度,时间=,速度= 补充:顺风逆风速度、顺水逆水速度公式 (单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时) 第5课时:用方程解决问题(3) 工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和 第6课时:用方程解决问题(4) 利润问题:利润=售价-进价,利润率=,售价=标价×(1-折扣) 第7课时:用方程解决问题(5) 等积变形问题:长方体的体积=长×宽×高; 圆柱的体积=底面积×高; 锻造前的体积=锻造后的体积 第8课时:用方程解决问题(6) 利息问题:本息和=本金+利息;利息=本金×利率 第9课时:总结与复习 第10课时:单元测试与讲解 第11课时:5.1 丰富的图形世界5.2 图形的变化 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形 平面图形 2、点、线、面、体 (1)几何图形的组成 (2)点动成线,线动成面,面动成体。 3、生活中的立体图形 4、棱柱及其有关概念 第12课时:5.3 展开与折叠5.4 从三个方向看 5、正方体的平面展开图:11种 6、截一个正方体 7、三视图 第13课时:总结与复习 第14课时:单元测试与讲解 第15课时:这两章的综合测评 第三阶段:8月1日—8月16日 共16个课时; 阶段课时知识点概括如下: 第六章 平面图形的认识(一) 6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直 具体安排如下: 第1课时:《平面图形的认识(一)》线段、射线、直线 线段,射线,直线 点、直线、射线和线段的表示 点和直线的位置关系有两种 线段的性质 线段的中点 直线的性质 第2课时:《平面图形的认识(一)》角 角、平角和周角、角的表示、角的度量、角的性质、角的平分线 第3课时:《平面图形的认识(一)》余角、补角、对顶角 余角和补角概念及定理 对顶角 第4课时:《平面图形的认识(一)》平行 平行线: 平行线公理及其推论 第5课时:《平面图形的认识(一)》垂直 垂直、垂线的性质、点到直线的距离、同一平面内,两条直线的位置关系 第6课时:《平面图形的认识(一)》总结与复习 第7课时:《平面图形的认识(一)》单元测试与讲评 第8课时:单元复习《有理数》 第9课时:单元复习《用字母表示数》 第10课时:单元复习《一元一次方程》 第11课时:单元复习《走进图形世界》 第12课时:单元复习《平面图形的认识(一)》 第13课时:期末复习(1)教材整体知识结构讲解 第14课时:期末复习(2)重要考点及相关题型讲解 第15课时:期末复习(3)计算题不失分,强化训练 第16课时:期末复习(4)期末考试题精炼 第二部分七年级下册也分为3个阶段(共45课时): 说明:此课时安排适用于中等学生,优等生的课时安排按实际情况而定,每阶段的课时可以压缩课时到10课时左右。后进生课时需增加4到6课时供巩固提高用。 第一阶段: 共7个课时; 阶段课时知识点概括如下: 第七章 平面图形的认识(二) 7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移 7.4 认识三角形 7.5 三角形的内角和 具体安排如下: 第1课时:《平面图形的认识(二)》探索直线平行的条件 平行线判定 第2课时:《平面图形的认识(二)》探索平行线的性质 平行线性质、平行线之间的距离及性质 第3课时:《平面图形的认识(二)》图形的平移 第4课时:《平面图形的认识(二)》认识三角形 三角形的定义及表示、三角形的“三线”及其各自的性质和相关定理。 第5课时:《平面图形的认识(二)》三角形的内角和 三角形的内角和、n边形的内角和公式、多边形的外交和。 第6课时:《平面图形的认识(二)》总结与复习 第7课时:《平面图形的认识(二)》单元测试与讲评 第二阶段:共18个课时 第八章 幂的运算 8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方 8.3 同底数幂的除法 第九章 从面积到乘法公式 9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式 9.5 单项式乘多项式法则的再认识——因式分解(一) 9.6 乘法公式的再认识——因式分解(二) 具体安排: 第1课时:《幂的运算》同底数幂的乘法 法则:同底数幂相乘,底数不变,指数相加。 第2课时:《幂的运算》幂的乘方与积的乘方 幂的乘方,底数不变,指数相乘。 积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。 第3课时:《幂的运算》同底数幂的除法 同底数幂相除,底数不变,指数相减。 第4课时:《幂的运算》零指数幂、负整数指数幂 任何不等于0的数的0次幂等于1。 任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。(,为正整数) 第5课时:《幂的运算》幂的运算的混合运算 第6课时:《幂的运算》总结和复习 第7课时:《幂的运算》单元测试与讲解 第8课时:《从面积到乘法公式》单项式乘单项式 单项式乘以单项式: 法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 注意:不要忘记符号、系数、只在一个单项式里出现的字母。 第9课时:《从面积到乘法公式》单项式乘多项式 单项式乘以多项式: 法则:用单项式乘多项式的每一项,再把所得的积相加。 注意:不要漏乘,特别是常数项。 第10课时:《从面积到乘法公式》多项式乘多项式 多项式乘以多项式 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 注意:不要漏乘。 检验漏乘的方法:再没有合并同类项前,项数应该等于多项式的项数之积。 第11课时:《从面积到乘法公式》乘法公式 乘法公式:完全平方公式、平法差公式。 第12课时:《从面积到乘法公式》混合运算复习 第13课时:《从面积到乘法公式》单项式乘多项式法则的再认识——因式分解(一) 因式分解: 定义:把一个多项式化成几个整式的积的形式。 法则: 1、提公因式法: 2、完全平方公式: 3、平方差公式: 注意点: 1、当多项式的第一项的系数为负时,把“-”号作为公因式的符号写在括号外,使括号内第一项的系数为正。 2、如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。 3、通常,把一个多项式分解因式,应先提公因式,再应用公式。进行多项式因式分解时,必须把每一个因式都分解到不能再分解为止。 第14课时:《从面积到乘法公式》乘法公式的再认识——因式分解(二) 十字相乘法(应用广泛,重点讲解;涉及到的主要有分式化简和解一元二次方程) 第15课时:《从面积到乘法公式》因式分解复习 第16课时:《从面积到乘法公式》总结与复习 第17课时:《从面积到乘法公式》单元测试与讲评 第18课时:《幂的运算》和《从面积到乘法公式》的总测评 第三阶段:共20课时 第十章 二元一次方程组 10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 用方程组解决问题 第十一章 图形的全等 11.1 全等图形 11.2 全等三角形 11.3 探索三角形全等的条件 第十二章 数据在我们周围 12.1 普查与抽样调查 12.2 统计图的选用 12.3 频数分布表和频数分布直方图 第十三章 感受概率 13.1 确定与不确定 13.2 可能性 具体安排: 第1课时:《二元一次方程组》二元一次方程 二元一次方程: 定义:含有两个未知数,并且所含未知数的项的次数都是1的方程。 注意: 1、 有2个未知数且未知数的指数是1。 2、 分母上不能有字母。 3、要是方程,即含有“=”。 第2课时:《二元一次方程组》二元一次方程组 二元一次方程组: 定义:含有两个未知数的两个一次方程所组成的方程组。 注意: 1、 有2个未知数且未知数的指数是1。 2、 分母上不能有字母。 3、要是方程,即含有“=”。 第3课时:《二元一次方程组》解二元一次方程组 二元一次方程组的解: 定义:我们把二元一次方程组中两个方程的公共解。 注意:要用大括号联立2个未知数。 求两个未知数需两个关系式;求三个未知数需三个关系式;求四个。。。。。。 二元一次方程组解法: 1、 代入消元法:将方程组的一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为解一元一次方程。 2、加减消元法:把方程组的两个方程相加或想减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。 第4课时:《二元一次方程组》用方程组解决问题 第5课时:《二元一次方程组》总结与复习 第6课时:《二元一次方程组》单元测试与讲评 第7课时:《图形的全等》全等图形 全等图形: 定义:能完全重合的图形叫做全等图形。 性质:它们的形状和大小都相同。 第8课时:《图形的全等》全等三角形 全等三角形: 定义:能重合的两个三角形是全等三角形。 性质:全等三角形的对应边相等,对应角相等。 注意:对应顶点放在对应的位置上。 第9课时:《图形的全等》探索三角形全等的条件 全等三角形判定方法: 1、 边角边(SAS)两边和它们的夹角对应相等的两个三角形全等。 2、 角边角(ASA)两角和它们的夹边对应相等的两个三角形全等。 3、 角角边(AAS)两角和其中一角的对边对应相等的两个三角形全等。 4、 边边边(SSS)三边对应相等的两个三角形全等。 5、 斜边、直角边(HL)斜边和一条直角边对应相等的两个直角三角形全等。 注意: 不能判定全等的只有SSA和AAA。 第10课时:《图形的全等》全等的证明题(1) 角平分线性质: 1、 角平分线上的点到角的两边的距离相等。 2、 到角的两边的距离相等的点在这个角的角平分线上。 第11课时:《图形的全等》全等的证明题(2) 第12课时:《图形的全等》总结与复习 第13课时:《图形的全等》单元测试与讲评 第14课时:《数据在我们周围》普查与抽样调查、统计图的选用 普查、抽样调查、总体、个体、样本、样本容量的概念。 扇形统计图的定义 公式:扇形圆心角度数=该部分的百分比×360° 常见的统计图及其特点: (1)折线统计图:反映事物的变化情况; (2)条形统计图:反映每个项目的具体数目; (3)扇形统计图:反映各部分在总体中所占的百分比; 第15课时:《数据在我们周围》频数分布表和频数分布直方图 频数、频率的概念。 公式: 频率=频数÷数据总个数。 变式(1)频数=频率×总数;变式(2)数据总个数=频数÷频率 注:1、频数之和等于总数。 2、频率之和等于1。 频数分布表的定义。 画频数分布直方图可按以下步骤: ①计算最大值与最小值的差; ②确定组距与组数:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。组数 = ③列频数分布表; ④画频数分布直方图: 注意:要标明横轴和竖轴的箭头和表达意思、条形要保持一样大小。 第16课时:《感受概率》确定与不确定、可能性 必然事件、不可能事件、随机事件的定义;必然事件和不可能事件都是确定事件。随机事件是不确定事件。 概率的定义。 通常规定:必然事件A发生的概率是1,记作P(A)=1;不可能事件A发生的概率是0,记作P(A)=0;随机事件A发生的概率P(A)是0和1之间的一个数,记作0<P(A)<1。 频率的稳定性的定义。 人们常把试验次数很大时事件发生的频率作为概率的近似值。 第17课时:期末复习(1)教材整体知识结构讲解 第18课时:期末复习(2)重要考点及相关题型讲解 第19课时:期末复习(3)计算题不失分,强化训练 第20课时:期末复习(4)期末考试题精炼 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一对一 辅导 指导 方案 七年 级数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文