第二篇 函数与基本初等函数Ⅰ第5讲 对数与对数函数.doc
《第二篇 函数与基本初等函数Ⅰ第5讲 对数与对数函数.doc》由会员分享,可在线阅读,更多相关《第二篇 函数与基本初等函数Ⅰ第5讲 对数与对数函数.doc(9页珍藏版)》请在咨信网上搜索。
第5讲 对数与对数函数 【2013年高考会这样考】 1.考查对数函数的定义域与值域. 2.考查对数函数的图象与性质的应用. 3.考查以对数函数为载体的复合函数的有关性质. 4.考查对数函数与指数函数互为反函数的关系. 【复习指导】 复习本讲首先要注意对数函数的定义域,这是研究对数函数性质.判断与对数函数相关的复合函数图象的重要依据,同时熟练把握对数函数的有关性质,特别注意底数对函数单调性的影响. 基础梳理 1.对数的概念 (1)对数的定义 如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数. (2)几种常见对数 对数形式 特点 记法 一般对数 底数为a(a>0且a≠1) logaN 常用对数 底数为10 lg N 自然对数 底数为e ln_N 2.对数的性质与运算法则 (1)对数的性质 ①alogaN=N;②logaaN=N(a>0且a≠1). (2)对数的重要公式 ①换底公式:logbN=(a,b均大于零且不等于1); ②logab=,推广logab·logbc·logcd=logad. (3)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;②loga=logaM-logaN; ③logaMn=nlogaM(n∈R);④log amMn=logaM. 3.对数函数的图象与性质 a>1 0<a<1 图象 性质 定义域:(0,+∞) 值域:R 过点(1,0) 当x>1时,y>0当0<x<1,y<0 当x>1时,y<0当0<x<1时,y>0 是(0,+∞)上的增函数 是(0,+∞)上的减函数 4.反函数 指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称. 一种思想 对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明. 两个防范 解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围. 三个关键点 画对数函数的图象应抓住三个关键点:(a,1),(1,0),. 四种方法 对数值的大小比较方法 (1) 化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1). (4)化同真数后利用图象比较. 双基自测 1.(2010·四川)2 log510+log50.25=( ). A.0 B.1 C.2 D.4 解析 原式=log5100+log50.25=log525=2. 答案 C 2.(人教A版教材习题改编)已知a=log0.70.8,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是( ). A.a<b<c B.a<c<b C.b<a<c D.c<a<b 解析 将三个数都和中间量1相比较:0<a=log0.70.8<1,b=log1.10.9<0,c=1.10.9>1. 答案 C 3.(2012·黄冈中学月考)函数f(x)=log2(3x+1)的值域为( ). A.(0,+∞) B.[0,+∞) C.(1,+∞) D.[1,+∞) 解析 设y=f(x),t=3x+1. 则y=log2t,t=3x+1,x∈R. 由y=log2t,t>1知函数f(x)的值域为(0,+∞). 答案 A 4.(2012·汕尾模拟)下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是 ( ). A.(-∞,1] B. C. D.[1,2) 解析 法一 当2-x≥1,即x≤1时,f(x)=|ln(2-x)|=ln(2-x),此时函数f(x)在(-∞,1]上单调递减.当0<2-x≤1,即1≤x<2时,f(x)=|ln(2-x)|=-ln(2-x),此时函数f(x)在[1,2)上单调递增,故选D. 法二 f(x)=|ln(2-x)|的图象如图所示. 由图象可得,函数f(x)在区间[1,2)上为增函数,故选D. 答案 D 5.若loga>1,则a的取值范围是________. 答案 考向一 对数式的化简与求值 【例1】►求值:(1);(2)(lg 5)2+lg 50·lg 2; (3)lg -lg +lg . [审题视点] 运用对数运算法则及换底公式. 解 (1)原式==. (2)原式=(lg 5)2+lg(10×5)lg =(lg 5)2+(1+lg 5)(1-lg 5)=(lg 5)2+1-(lg 5)2=1. (3)法一 原式=(5lg 2-2lg 7)-×lg 2+(2lg 7+lg 5) =lg 2-lg 7-2lg 2+lg 7+lg 5=(lg 2+lg 5)=lg 10=. 法二 原式=lg-lg 4+lg(7)=lg= lg=. 对数源于指数,对数与指数互为逆运算,对数的运算可根据对数的定义、对数的运算性质、对数恒等式和对数的换底公式进行.在解决对数的运算和与对数的相关问题时要注意化简过程中的等价性和对数式与指数式的互化. 【训练1】 (1)若2a=5b=10,求+的值. (2)若xlog34=1,求4x+4-x的值. 解 (1)由已知a=log210,b=log510, 则+=lg 2+lg 5=lg 10=1. (2)由已知x=log43, 则4x+4-x=4log43+4-log43=3+=. 考向二 对数值的大小比较 【例2】►已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),b=f(log3),c=f(0.2-0.6),则a,b,c的大小关系是( ). A.c<a<b B.c<b<a C.b<c<a D.a<b<c [审题视点] 利用函数单调性或插入中间值比较大小. 解析 log3=-log23=-log49,b=f(log3)=f(-log49)=f(log49),log47<log49,0.2-0.6=-=>=2>log49, 又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的, ∴f(0.2-0.6)<f(log3)<f(log47),即c<b<a,故选B. 答案 B 一般是同底问题利用单调性处理,不同底问题的处理,一般是利用中间值来比较大小,同指(同真)数问题有时也可借助指数函数、对数函数的图象来解决. 【训练2】 (2010·全国)设a=log32,b=ln 2,c=5-,则( ). A.a<b<c B.b<c<a C.c<a<b D.c<b<a 解析 法一 a=log32=,b=ln 2=,而log23>log2e>1,所以a<b,c=5-=,而>2=log24>log23,所以c<a,综上c<a<b,故选C. 法二 a=log32=,b=ln 2=,1<log2e<log23<2,∴<<<1;c=5-=<=,所以c<a<b,故选C. 答案 C 考向三 对数函数性质的应用 【例3】►已知函数f(x)=loga(2-ax),是否存在实数a,使函数f(x)在[0,1]上是关于x的减函数,若存在,求a的取值范围. [审题视点] a>0且a≠1,问题等价于在[0,1]上恒有. 解 ∵a>0,且a≠1, ∴u=2-ax在[0,1]上是关于x的减函数. 又f(x)=loga(2-ax)在[0,1]上是关于x的减函数, ∴函数y=logau是关于u的增函数,且对x∈[0,1]时,u=2-ax恒为正数. 其充要条件是,即1<a<2. ∴a的取值范围是(1,2). 研究函数问题,首先考虑定义域,即定义域优先的原则.研究复合函数的单调性,一定要注意内层与外层的单调性问题.复合函数的单调性的法则是“同增异减”.本题的易错点为:易忽略2-ax>0在[0,1]上恒成立,即2-a>0.实质上是忽略了真数大于0的条件. 【训练3】 已知f(x)=log4(4x-1) (1)求f(x)的定义域; (2)讨论f(x)的单调性; (3)求f(x)在区间上的值域. 解 (1)由4x-1>0解得x>0, 因此f(x)的定义域为(0,+∞). (2)设0<x1<x2,则0<4x1-1<4x2-1, 因此log4(4x1-1)<log4(4x2-1),即f(x1)<f(x2),f(x)在(0,+∞)上递增. (3)f(x)在区间上递增, 又f=0,f(2)=log415, 因此f(x)在上的值域为[0,log415]. 难点突破4——与指数、对数函数求值问题有关的解题基本方法 指数与对数函数问题,高考中除与导数有关的综合问题外,一般还出一道选择或填空题,考查其图象与性质,其中与求值或取值范围有关的问题是热点,难度虽然不大,但要注意分类讨论. 一、与对数函数有关的求值问题 【示例】► (2011·陕西)设f(x)= 若f(f(1))=1,则a=________. 二、与对数函数有关的解不等式问题 【示例】► (2011·辽宁改编)设函数f(x)=则满足f(x)≤2的x的取值范围是________. .精品资料。欢迎使用。 高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u .精品资料。欢迎使用。 高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二篇 函数与基本初等函数第5讲 对数与对数函数 第二 函数 基本 初等 对数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文