探究等腰三角形.docx
《探究等腰三角形.docx》由会员分享,可在线阅读,更多相关《探究等腰三角形.docx(4页珍藏版)》请在咨信网上搜索。
一、教学背景分析 1.教学内容分析: 《等腰三角形的性质》是三角形一章中的重要内容。本节课是在小学掌握了等腰三角形,中学掌握了全等三角形的基础上进行的,主要学习等腰三角形“等边对等角”及“底边上的高线、底边上的中线、顶角的平分线互相重合”的性质。本节内容既是三角形全等知识的深化和应用,又是学习线段的垂直平分线、轴对称图形、四边形等其他数学知识的基础,还是证明角相等、线段相等及两条直线互相垂直的依据。 因此,本节内容在教材中处于非常重要的位置,起着承前启后的作用。等腰三角形的性质在平面图形和空间立体图形的证明和计算中有着广泛的应用,在实际生活的建筑、测量、设计等方面也有其独特的应用。等腰三角形性质的认识和学习,可以从学生周边熟悉的事物入手,让学生观察和动手体验等腰三角形的性质的存在和作用,通过学生主动细心观察和动手实践来体验认识到数学是解决实际问题和进行交流的重要工具,让学生感受到数学活动充满着探索性和创造性, 2.学生情况分析: 初二的学生是中学阶段身心发展变化较大的一个年级,处于青春期的学生,情绪、情感都有明显的不稳定因素,但是学生对于用新知识、新观点来认识周边的世界非常感兴趣,因此,教师要激发学生学习兴趣,营造一个使学生有机会自己动手、亲自体验新知识的氛围。在学生的原有知识结构的基础上,让每位学生都能在数学学习中有所发现、有所发展,改变以往过于注重基础知识传授而忽略学生情感发展的倾向,让学生从动手实验入手,发现、猜想、证明、探究等腰三角形的性质,并逐步懂得联系生活实际。 二、教学目标及教学重、难点的确定 根据数学课程标准中关于 “ 等腰三角形的性质 ” 的教学要求,结合学生已有的知识基础和认知能力,我确定了本节课的教学目标及教学重、难点: 1.教学目标: (1)理解 并掌握等腰三角形的性质 定理及推论;能根据 等腰三角形的性质 定理及推论,解决有关计算和证明的问题。 (2)通过剪纸、折叠、度量以及等腰三角形的性质的验证与证明等活动, 使学生 经历观察、实验、发现、猜想、归纳、证明的探索过程,体会 一般与特殊的关系, 学会发现问题,解决问题,培养学生多角度思考问题的习惯,体会方程、 转化、分类讨论、数形结合等数学思想 和应用数学意识,提高学生分析问题和解决问题的能力。 (3)通过小组讨论交流活动,培养学生互相合作的意识,通过一题多证,活跃学生思维,培养学生善于发现问题、解决问题的实践能力。 2.教学重点: 等腰三角形性质的探索、证明和应用; 3.教学难点: 等腰三角形性质的证明和应用。 三、教学方法与手段的选择 本节课主要围绕学生动手实践、自主探索的学习方式进行设计,采取实验探究发现法, 以学生小组讨论、合作探究、教师启发引导的方式,学习等腰三角形的性质。 在教学手段方面,我选择了 多媒体课件 辅助教学的方式,直观、形象地再现了 等腰三角形性质的探索、验证过程, 使学生在实践中体验发现学习的过程, 积累基本的数学活动经验,感悟数学思想 。 四、教学过程的设计 (一)创设情境,提出问题 问题:同学们都知道,2008年北京奥运会在非常著名的鸟巢建筑中举行,有的同学从鸟巢的钢结构中发现:等腰三角形在实际生活中应用非常广泛,他们非常想知道:等腰三角形有什么特殊的性质呢?自然引入新课——等腰三角形的性质。 从学生熟悉的亲身经历的现实生活入手,符合学生原有认知结构,营造使学生亲自体验新知识的氛围,创设有利于引向数学问题本质的真实情境,引导学生发现问题、提出问题,激发学生学习兴趣及探究的欲望,显示实际生活中等腰三角形的广泛应用,引出研究等腰三角形的重要性。 (二)实验探究,发现猜想 ① 通过剪纸自制等腰三角形 把一张长方形的纸按照图中虚线对折,并剪去阴影部分,再把它展开。在剪纸过程中可知:剪刀剪过的两条边是相等的,即 △ ABC 为等腰三角形( △ ABC 中, AB = AC ) ② 观察实验,测量验证 把剪出的等腰三角形 △ ABC 沿折痕 AD 对折,观察:哪些线段重合?哪些角重合?并用量角器、直尺测量验证,探究:等腰三角形中存在怎样的数量关系?折痕具有什么特性呢? 小组合作交流,填入下表: ③ 归纳,提出猜想 引导学生通过小组讨论交流,用文字语言对结论进行归纳、抽象、概括,提出猜想。 猜想 1 :等腰三角形的两个底角相等 。 猜想 2 :等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。 本阶段 通过对折、测量等活动,培养学生的合作意识、探究意识和动手能力。引导学生自主探究、发现、猜想、验证等腰三角形的性质,体验数学的学习活动过程,发展合理推理能力,符合学生认知规律。 (三)合作交流,证明猜想 本阶段在学生经历“实验 --- 发现 --- 猜想 --- 验证”的基础上,引导学生讨论交流, 分别作出不同的辅助线,利用不同的方法证明 猜想 , 符合学生的原有知识结构,使学生逐步意识到,结论的正确性需要演绎推理的确认, 把证明作为学生探索等腰三角形性质活动的 自然延续和必要发展,发展演绎推理的能力,激发学生对数学证明的兴趣,提高学生思维的广阔性和灵活性。 ① 证明猜想 1 :等腰三角形的两个底角相等 。 启发引导学生:要证明两个角相等,可以通过构造两个全等三角形进行证明。在学生独立思考后, 引导学生讨论交流,分别作出不同的辅助线,用不同的 思路、方法 证明性质, 教师对学生及时进行鼓励评价,归纳示范,形成定理,并揭示等腰三角形性质定理的实质,体会转化思想 ,同时帮助引导学生总结证明两个角相等的方法,开阔学生思路。 利用平行线证明两个角相等;利用全等三角形判断两个角相等;利用等腰三角形性质来 证明两个角相等。 ② 证明猜想 2 :等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。 问题 : 在添加不同的辅助线,用不同方法证明 “ 等边对等角 ” 性质时,还可以进一步得出什么结论? 折痕具有什么特性呢? 引导学生回顾讨论,小组交流: 进一步强化几何的 3 种语言(图形语言、符号语言、文字语言)的互相转化。 注意: 只有等腰三角形才具有“三线合一”的性质,一般三角形中线 AD ,高线 AF ,角平分线 AE 互不重合,但是当 △ ABC 中, AB = A C 时,这三条线重合在一起,即“等腰三角形三线合一”。用几何画板演示,使学生体会一般与特殊的关系。 强调: 等腰三角形性质定理及推论为证明边等、角等、垂直提供了重要依据,在实际生产、生活中应用广泛。 (四) 应用定理,解决问题 本阶段选取了不同层次的例题和练习,使学生在原有知识结构的基础上,进一步理解掌握等腰三角形的性质,会应用性质进行简单计算、证明,体会几何问题的代数解法,体会利用三线合一作辅助线的解题基本方法, 培养学生的发散思维能力,注重知识的“生长点”与“延伸点”,灵活解决实际生活中的问题,感受数学知识连续性、整体性,体验发现问题、提出问题、探究问题、解决问题、应用问题的乐趣。 ① 应用等腰三角形的性质解决实际问题 . 数学小组的同学们想检验:流动红旗在教室内摆放得是否水平?请你能帮他们设计一种检验方案,并说明理由。 检验方案:自制 三角形测平架, AB =AC ,在 BC 的中点 D 挂一个重锤,自然下垂。调整架身,使 BC 与 流动红旗顶端重合,若点 A 恰好在重锤线上。这时流动红旗处于水平位置。 或利用等腰三角形的性质来证明。 教学预案一:过 A 作 AG ⊥ BC 于 G . (如图 1 ) 教学预案二:过 A 作 AH ⊥ EF 于 H . (如图 2 ) 教学预案三:过 C 作 MC ⊥ BC 交 BA 的延长线于 M . (如图 3 ) 教学预案四:过 E 作 EN ⊥ EF 交 CA 的延长线于 N . (如图 4 ) 教学预案五:过 F 点作 EP ∥ AC 交 BC 的延长线于 P . (如图 5 )- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 探究 等腰三角形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文