《一元一次不等式》教学设计(第1课时)-.doc
《《一元一次不等式》教学设计(第1课时)-.doc》由会员分享,可在线阅读,更多相关《《一元一次不等式》教学设计(第1课时)-.doc(4页珍藏版)》请在咨信网上搜索。
《一元一次不等式》教学设计(第1课时) 一、内容和内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础. 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法. 二、目标和目标的解析 (一)目标 (1)了解一元一次不等式的概念,掌握一元一次不等式的解法; (2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会. (二)目标解析 达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集. 达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤. 三、教学问题诊断分析 通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进行比较,逐步将不等式变形为最简形式. 本节课的教学难点为:解一元一次不等式步骤的确定. 四、教学过程设计 (一)引导观察 形成概念 问题 : 观察下面的不等式,它们有哪些共同特征? x-7>26 3x<2x+1 x>50 -4x>3 学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比. 师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力. (二)通过类比 研究解法 练习:利用不等式的性质解不等式x-7>26 学生尝试独立完成练习 教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向. 设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备. 设问1:解一元一次方程的依据和一般步骤是什么? 学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1. 设问2:解一元一次不等式能否采用类似的步骤? 学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集. 设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路. (三) 例题讲解 规范步骤 例:解下列不等式,并在数轴上表示解集 (1)2(1+x)<3 (2)≥ 设问(1):解一元一次不等式的目标是什么? 学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式. 设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗? 由学生独立完成,老师评讲 设问(3)对比不等式≥与2(1+x)<3的两边,它们在形式上有什么不同? 设问(4):怎样将不等式≥变形,使变形后的不等式不含分母? 小组合作交流,老师点拨 设问(5):你能说出解一元一次不等式的基本步骤吗? 学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1. 设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变. 设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤. (四) 辨别异同 深化认识 设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处? 学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处. 相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式. 不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方程的最简形式是x=a. 设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想. 设问2: 解一元一次不等式每一步变形的依据是什么? 学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据. 设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力. (五)练习巩固 形成能力 练习:解一元一次不等式x≥并把它的解集,在数轴上表示出来. 学生独立解不等式,老师点评 设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用. (六)归纳小结 反思提高 教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题: (1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处? (2)解一元一次不等式运用了哪些数学思想? 设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识. (七)布置作业,课外反馈 教科书习题9.2第1,2,3题 设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整. 五、目标检测设计 1.解不等式 (1)-8x<3 (2)-x≥- (3)3x-7≥4x-4 设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性. 2.解下列不等式,并分别把它们的解集在数轴上表示 (1) 3(x+2)-1≥5-2(x-2) (2)>-2 设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次不等式 一元 一次 不等式 教学 设计 课时
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文