平行四边形的性质教学案例.doc
《平行四边形的性质教学案例.doc》由会员分享,可在线阅读,更多相关《平行四边形的性质教学案例.doc(7页珍藏版)》请在咨信网上搜索。
平行四边形的性质教学案例 一、教材分析 1.教材的地位与作用 平行四边形是最基本的几何图形,也是 “空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用. 本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路. 另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用. 2.教学目标: 知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力. 数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性. 情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐. 3.教学重点、难点: 重点:理解并掌握平行四边形的概念及其性质. 难点:运用平移、旋转的图形变换思想探究平行四边形的性质. 4.教材处理: 基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合. 首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性. 然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者. 最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来. 这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质. 总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的. 二.教学方法与手段 本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性. 三.教学程序 教学环节 一. 创设情境 导入新课 问题(1) 同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗? 学生根据自己的生活经验,可能回答:平行四边形、矩形、四边形…… 教师点拨:太阳光属于平行光,窗口在地面上的影子通常是平行四边形. 问题(2) 爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢? 通过本节课的学习,大家就能明白其中的道理.今天,我们来共同研究平行四边形及其性质. (从学生的生活实际出发,创设情境,提出问题,激发学生强烈的好奇心和求知欲.学生经历了将实际问题抽象为数学问题的建模过程。通过观看学生习以为常的平行光线在室内的投影片,让学生感受到平行四边形与生活实际紧密联系;同时,把思维兴奋点集中到要研究的平行四边形上来,为下面学习新知识创造了良好开端). 二.实践探究 交流新知 活动一:拼图游戏. 问题1:你能利用手中两张全等的三角形纸板拼出四边形吗? 学生动手操作,教师留意观察,请同学将拼出的六种形状不同的四边形展示在黑板上. 问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由. 结合拼出的这个特殊四边形,给出平行四边形定义. 问题3:黑板上展示的图形中,哪些是平行四边形呢? 学生对黑板上拼出的四边形进行识别. 教师强调定义的两方面作用:一是可以判定一个四边形是不是平行四边形;二是平行四边形具有两组对边分别平行的性质. 问题4:根据定义画一个平行四边形. 学生画图,亲身感悟平行四边形. 教师画图示范.结合图形介绍平行四边形对边、对角、对角线等元素及平行四边形的记法、读法. 活动二:开放探究平行四边形的性质. 1、活动要求: 大家先看清要求,再动手操作,结论写在记录板上. 2、学生利用学具(全等的三角形纸板、平行四边形纸板各一对,格尺,量角器,图钉)小组合作探究. 教师以合作者的身份深入到各小组中,了解学生的探究过程并适当予以指导. 3、汇报:学生展示实验过程,相互补充探究出的结论. 教师要引导学生将探究出的结论按照边、角、对角线进行归类梳理,使知识的呈现具有条理性. 4、请大家思考一下,利用我们以前学习的几何知识通过说理能验证这三个结论吗? 教师小结:连接平行四边形的对角线,是我们常做的辅助线,它构造出两个全等的三角形,从而将四边形问题转化为熟悉的三角形问题.充分体现了由未知转化为已知,由繁化简的数学思想. 5、总结:平行四边形的性质 平行四边形对边相等; 平行四边形对角相等; 平行四边形度角线互相平分. 教师小结:我们用不同的方法,从不同的角度,通过实验、说理得到了平行四边形的性质.它为我们得到线段相等、角相等提供了新的方法和依据. (学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化. 通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性. 渗透类比思想.在比较中学习,能够加深学生对平行四边形概念本质的理解. 通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为下面介绍平行四边形的对边、对角、对角线以及从这些基本元素入手探究图形性质打下坚实基础.鼓励学生探究方式、结果、表示方法的多样化以及学生学习方式的个性化.满足学生的多样化学习需求.做到既着眼于共同发展,又关注到个性差异.小组合作探究结果的展示,从多个方面完善了学生对平行四边形性质的认识,大大提高了学习效率;更为重要的是在这一过程中,让学生体悟到学习方式的转变.不但完成了学习任务,而且还学会了与人交流沟通的本领.真正体现了新课程理念中“以人为本,促进学生终身发展” 的教学理念.注重直观操作和简单推理的有机结合.把几何论证作为探究活动的自然延续和必然发展.使学生的实践精神,创新意识和自觉说理意识得到提高.在开放式探究平行四边形性质的活动后,再引导学生总结归纳,由此达到数学教学的新境界——提升思维品质,形成数学素养. 三.开放训练 体现应用 1.解决课前提出的实际问题 某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长.你知道小刚是如何计算的吗?这样计算的根据是什么? 2.试一试 用图钉把一根平放在 ABCD上的细纸板条固定在对角线AC、BD的交点O处.拨动纸板条,使它随意停留在任意的位置.观察几次拨动的结果,你有什么新发现?记录下来,再与同伴交流. (教师深入小组参与活动,倾听学生的交流,鼓励学生尽可能多的给出不同的答案.学生可能发现一些线段、角相等,一些三角形面积相等、一些四边形面积相等) 四.反思小结 以师生共同小结的方式进行: (1)回顾知识 (2)总结方法 (3)提炼思想 本节课,我们通过实验得到了平行四边形的性质、又从理论上进行了验证. 在学习的过程中,我们体会到处理问题时,不同的方法可以得到相同的结论,这是方法的不唯一性;同一条件下可以得到不同的结论,这就是结论的不唯一性. 所以,将来处理任何问题时,我们要想到不同的方法;同时,对同一件事情要想到几种不同的情况.希望大家在今后的学习生活中要掌握好这些思想和方法,灵活地运用到将来的生活和学习中. 附:板书设计 4.1 平行四边形及其性质 1、定义:两组对边分别平行的四边形 叫做平行四边形. A D B C 记作: ABCD 2、性质: (1)平行四边形的对边相等 (2)平行四边形的对角相等 (3)平行四边形的对角线互相平分- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 性质 教学 案例
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文