中考数学四边形经典题目及答案.doc
《中考数学四边形经典题目及答案.doc》由会员分享,可在线阅读,更多相关《中考数学四边形经典题目及答案.doc(7页珍藏版)》请在咨信网上搜索。
1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中. (1)四边形OECF的面积如何变化. (2)若正方形ABCD的面积是4,求四边形OECF的面积. 解:在梯形ABCD中由题设易得到: △ABD是等腰三角形,且∠ABD=∠CBD=∠ADB=30°. 过点D作DE⊥BC,则DE=BD=2,BE=6. 过点A作AF⊥BD于F,则AB=AD=4. 故S梯形ABCD=12+4. 2.如图,ABCD中,O是对角线AC的中点,EF⊥AC交CD于E,交AB于F,问四边形AFCE是菱形吗?请说明理由. 解:四边形AFCE是菱形. ∵四边形ABCD是平行四边形. ∴OA=OC,CE∥AF. ∴∠ECO=∠FAO,∠AFO=∠CEO. ∴△EOC≌△FOA,∴CE=AF. 而CE∥AF,∴四边形AFCE是平行四边形. 又∵EF是垂直平分线,∴AE=CE. ∴四边形AFCE是菱形. 3.如图,在△ABC中,∠B=∠C,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.求证:(1)△BDE≌CDF.(2)△ABC是直角三角形时,四边形AEDF是正方形. 19.证明:(1) △BDE≌△CDF. (2)由∠A=90°,DE⊥AB,DF⊥AC知: 矩形AEDF是正方形. 4.如图,ABCD中,E、F为对角线AC上两点,且AE=CF,问:四边形EBFD是平行四边形吗?为什么? 解:四边形EBFD是平行四边形.在ABCD中,连结BD交AC于点O, 则OB=OD,OA=OC.又∵AE=CF,∴OE=OF. ∴四边形EBFD是平行四边形. 5.如图,矩形纸片ABCD中,AB=3 cm,BC=4 cm.现将A,C重合,使纸片 折叠压平,设折痕为EF,试求AF的长和重叠部分△AEF的面积. 【提示】把AF取作△AEF的底,AF边上的高等于AB=3. 由折叠过程知,EF经过矩形的对称中心,FD=BE,AE=CE=AF.由此可以在 △ABE中使用勾股定理求AE,即求得AF的长. 【答案】如图,连结AC,交EF于点O, 由折叠过程可知,OA=OC, ∴ O点为矩形的对称中心.E、F关于O点对称,B、D也关于O点对称. ∴ BE=FD,EC=AF, 由EC折叠后与EA重合, ∴ EC=EA. 设AF=x,则BE=FD=AD-AF=4-x,AE=AF=x. 在Rt△ABE中,由勾股定理,得 AB2+BE2=AE2,即 32+(4-x) 2=x2. 解得 x=. ∴ S△AEF=×3×=(cm2) 故AF的长为cm,△AEF的面积为cm2. 6.如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB. 【提示】延长GP交BC于H,只要证PH=PF即可,所以只要证∠PBF=∠PBH. 【答案】∵ BE=DE, ∴ ∠EBD=∠EDB. ∵ 在矩形ABCD中,AD∥BC, ∴ ∠DBC=∠ADB, ∴ ∠EBD=∠CBD. 延长GP交BC于H点. ∵ PG⊥AD, ∴ PH⊥BC. ∵ PF⊥BE,P是∠EBC的平分线上. ∴ PF=PH. ∵ 四边形ABHG中, ∠A=∠ABH=∠BHG=∠HGA=90°. ∴ 四边形ABHG为矩形, ∴ AB=GH=GP+PH=GP+PF 故 PF+PG=AB. 7.已知:如图,以正方形ABCD的对角线为边作菱形AEFC,B在FE的延长线上. 求证:AE、AF把∠BAC三等分. 【提示】证出∠CAE=30°即可. 【答案】连结BD,交AC于点O,作EG⊥AC,垂足为G点. ∵ 四边形AEFC为菱形, ∴ EF∥AC. ∴ GE=OB. ∵ 四边形ABCD为正方形, ∴ OB⊥AC, ∴ OBGE, ∵ AE=AC,OB=BD=AC, ∴ EG=AE, ∴ ∠EAG=30°. ∴ ∠BAE=15°. 在菱形AEFC中,AF平分∠EAC, ∴ ∠EAF=∠FAC=∠EAC=15° ∴ ∠EAB=∠FAE=∠FAC. 即AE、AF将∠BAC三等分. 8.如图,已知M、N两点在正方形ABCD的对角线BD上移动,∠MCN为定角a, 连结AM、AN,并延长分别交BC、CD于E、F两点,则∠CME与∠CNF在M、 N两点移动过程,它们的和是否有变化?证明你的结论. 【提示】BD为正方形ABCD的对称轴, ∴ ∠1=∠3,∠2=∠4, 用∠1和∠2表示∠MCN以及∠EMC+∠FNC. 【答案】∵ BD为正方形ABCD的对称轴, ∴ ∠1=∠3,∠2=∠4, ∴ ∠EMC=180°-∠1-∠3=180°-2∠1. 同理 ∠FNC=180°-2∠2. ∴ ∠EMC+∠FNC=360°-2(∠1+∠2). ∵ ∠MCN=180°-(∠1+∠2), ∴ ∠EMC+∠FNC总与2∠MCN相等. 因此∠EMC+∠FNC始终为定角,这定角为∠MCN的2倍. 9.如图(1),AB、CD是两条线段,M是AB的中点,S△DMC、S△DAC和S△DBC分别 表示△DMC、△DAC、△DBC的面积.当AB∥CD时,有 S△DMC= ① (1)如图(2),若图(1)中AB∥CD时,①式是否成立?请说明理由. (2)如图(3),若图(1)中AB与CD相交于点O时,S△DMC与S△DAC和S△DBC有何种相等关系?证明你的结论. 图(1) 图(2) 图(3) 【提示】△DAC,△DMC 和△DBC 同底CD,通过它们在CD 边上的高的关系,来确定它们面积的关系. 【答案】(1)当AB∥CD时,①式仍成立. 分别过A、M、B作CD的垂线,AE、MN、BF的垂足分别为E、N、F. ∵ M为AB的中点, ∴ MN=(AE+BF). ∴ S△DAC+S△DBC=DC·AE+DC·BF=DC·(AE+BF)=2 S△DMC. ∴ S△DMC= (2)对于图(3)有S△DMC=. 证法一:∵ M是AB的中点,S△ADM=S△BDM,S△ACM=S△BCM, S△DBC=S△BDM+S△BCM+S△DMC, ① S△DAC=S△ADM+S△ACM-S△DMC ② ①-②得:S△DBC-S△DAC=2 S△DMC ∴ S△DMC=. 证法二:如右图,过A作CD的平行线l,MN⊥l,垂足为N,BE⊥l,垂足为E.设A、M、B到CD的距离分别h1、h0、h2.则MN=h1+h0,BE=h2+h1. ∵ AM=BM, ∴ BE=2 MN. ∴ h2+h1=2(h1+h0), ∴ h0=. ∴ S△DMC=. 10.已知:如图,△ABC中,点O是AC上边上一个动点,过点O作直线MN∥BC, MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证EO=FO. (2)当点O运动到何处时,四边形AECF是矩形?证明你的结论. 【提示】(1)证明OE=OC=OF; (2)O点的位置首先满足四边形AECF是平行四边形,然后证明它此时也是矩形. 【答案】(1)∵ CE平分∠BCA, ∴ ∠BCE=∠ECO. 又 MN∥BC, ∴ ∠BCE=∠CEO. ∴ ∠ECO=∠CEO. ∴ OE=OC. 同理 OC=OF. ∴ OE=OF. (2)当点O运动到AC边的中点时,四边形AECF是矩形,证明如下: ∵ OE=OF,又O是AC的中点, 即 OA=OC, ∴ 四边形AECF是平行四边形. ∵ CE、CF分别平分∠BCA、∠ACD,且∠BCA+∠ACD=180°, ∴ ∠ECF=∠ECO+∠OCF=(∠BCA+∠ACD)=90°. ∴ □AECF是矩形.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 四边形 经典 题目 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文