中考数学专题复习七动态几何变化问题.doc
《中考数学专题复习七动态几何变化问题.doc》由会员分享,可在线阅读,更多相关《中考数学专题复习七动态几何变化问题.doc(7页珍藏版)》请在咨信网上搜索。
中考数学专题复习七 动态几何变化问题 动态几何题已成为中考试题的一大热点题型。在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。 下面就动点型、动线型、动面型等几何题作一简要分析。 一. 动点型 1. 单动点型 例1. 如图1,在矩形ABCD中,AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E,F分别是垂足,求PE+PF的长。 分析与略解:P是AD边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。当P点在D(或A)处时,过D作DG⊥AC,垂足为G, 则PE=0,PF=DG, 故PE+PF=DG, 在Rt△ADC中, 由面积公式有:, 再有“静”寻求“动”的一般规律,得到PE+PF=DG=。 图1 2. 双动点型 例2. (2003年吉林省)如图2,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A路线运动,到A停止。若点P、Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度为每秒dcm。图3是点P出发x秒后△APD的面积与x(秒)的函数关系图象,图4是点Q出发x秒后△AQD的面积与x(秒)的函数关系图象。 图2 图3 图4 (1)参照图3,求a、b及图3中c的值。 (2)求d的值。 (3)设点P离开点A的路程为,点Q到点A还需走的路程为,请分别写出动点P、Q改变速度后,、与出发后的运动时间x(秒)的函数关系式。并求出P、Q相遇时x的值。 (4)当点Q出发________秒时,点P、点Q在运动路线上相距的路程为25cm。 分析与略解:解决此类问题的关键是应注意图形位置变化及动点运动的时间和速度,用分类讨论的思想来求解。 (1)观察图3, 所以(秒), (厘米/秒), (秒)。 (2)依题意, 解得(厘米/秒) (3) 依题意,所以(秒) (4)1和19。 二. 动线型 1. 线平移型 例3. (2004年河南省)如图5,边长为2的正方形ABCD中,顶点A的坐标是(0,2),一次函数y=x+t的图象L随t的不同取值变化时,位于L的右下方由L和正方形的边围成的图形面积为S(阴影部分)。 (1)当t取何值时,S=3? (2)在平面直角坐标系下,画出S与t的函数图象。 图5 分析与略解:本题应抓住直线在平移过程中保持的位置关系和数量关系。 (1)设L与正方形的边AD、CD相交于M、N,易证Rt△DMN是等腰三角形。只有当时,△DMN的面积是1,求得。 所以时,S=3。 (2)当时,; 当时,; 当时,S=4。图象略。 2. 线旋转型 例4. (2004年海口市)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。 (1)当直线MN绕点C旋转到图6的位置时,求证:①△ADC≌△CEB;②DE=AD+BE。 图6 (2)当直线MN绕点C旋转到图7的位置时,求证:DE=。 图7 (3)直线MN绕点C旋转到图8的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明。 图8 简析:本题在直线MN的旋转过程中,保持了△ADC≌△CEB这一性质。 三. 动面型 1. 面平移型 例5(2001年吉林省)如图9,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线L上,当C、Q两点重合时,等腰△PQR以1cm/s的速度沿直线L按箭头所示方向开始匀速运动,t s后正方形ABCD与等腰△PQR重合部分的面积为。解答下列问题: (1)当t=3s时,求S的值; (2)当t=5s时,求S的值; (3)当时,求S与t的函数关系式,并求出S的最大值。 简析:此题是一个图形的运动问题,解答的方法是将各个时刻的图形分别画出来,则图形由“动”变“静”,再设法分别求解。这种分类画图的方法在解动态几何题中非常有效,它可帮助我们理清思路,各个击破。 图9 2. 旋转型 例6. 如图10,正△ABC的中心O恰好是扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O无论怎样转动,△ABC与扇形重叠部分的面积总等于△ABC的面积的,扇形的圆心角应为多少度?说明理由。 分析:本题属于动面型问题,先找到一种特殊情况,即重叠部分为△OBC时,,且此时∠BOC=120°,因此本题实际是扇形ODE由扇形BOC旋转得到的,∠FOG=∠BOC=120°,可证△BOF≌△COG,所以,故扇形的圆心角为120°。 图10 四. 翻折型 折叠类问题实际上是对称问题,解此类题目,应抓住翻折后的对称性及一些隐含的位置关系和数量关系。 例7. 如图11,一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至的位置,若为长方形纸片ABCD的对称中心,则的值是___________。 析解:连结BD。 因为点为长方形纸片ABCD的对称中心, 所以点一定在BD上, 图11 由翻折图形的性质可知 所以 所以△是等边三角形 所以- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 复习 动态 几何 变化 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文