因式分解技巧讲解与练习.doc
《因式分解技巧讲解与练习.doc》由会员分享,可在线阅读,更多相关《因式分解技巧讲解与练习.doc(2页珍藏版)》请在咨信网上搜索。
卢老师数学 专用资料 因式分解的常见变形技巧 技巧一 符号变换 有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。 体验题1 (m+n)(x-y)+(m-n)(y-x) 指点迷津 y-x= -(x-y) 体验过程 原式=(m+n)(x-y)-(m-n)(x-y) =(x-y)(m+n-m+n)=2n(x-y) 小结 符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。 实践题1 分解因式:-a2-2ab-b2 实践详解 各项提出符号,可用平方和公式. 原式=-a2-2ab-b2=-( a2+2ab+b2)= -(a+b)2 技巧二 系数变换 有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。 体验题2 分解因式 4x2-12xy+9y2 体验过程 原式=(2x)2-2(2x)(3y)+(3y)2=(2x -3y)2 小结 系数变化常用于可用公式,但用公式的条件不太清晰的情况下。 实践题2 分解因式 实践详解 原式=()2+2.+()2=(+) 技巧三 指数变换 有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。 体验题3 分解因式x4-y4 指点迷津 把x2看成(x2)2,把y4看成(y2)2,然后用平方差公式。 体验过程 原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y) 小结 指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关系。 实践题3 分解因式 a4-2a4b4+b4 指点迷津 把a4看成(a2)2,b4=(b2)2 实践详解 原式=(a2-b2)2=(a+b)2(a-b)2 技巧四 展开变换 有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。然后再分组。 体验题4 a(a+2)+b(b+2)+2ab 指点迷津 表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。然后分组。 体验过程 原式= a2+2a+b2+2b+2ab= a2+ b2+2a+2b+2ab= a2+ b2+2(a+b+ab) 小结 展开变化常用于已经分组,但此分组无法分解因式, 当于重新分组。 实践题4 x(x-1)-y(y-1) 指点迷津 表面上看无法分解因式,展开后试试:x2-x-y2+y。然后重新分组。 实践详解 原式= x2-x-y2+y=(x2-y2)-(x-y)=(x+y)(x-y)-(x-y)=(x-y)(x+y-1) 技巧五 拆项变换 有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。 体验题5 分解因式3a3-4a+1 指点迷津 本题最高次是三次,缺二次项。三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。所以我们将一次项拆开,拆成-3a-a试试。 体验过程 原式= 3a3-3a-a+1=3a(a2-1)+1-a=3a(a+1)(a-1)-(a-1) =(a-1)[3a(a+1)-1]=(a-1)(3a2+3a-1) 另外,也可以拆常数项,将1拆成4-3。 原式=3a3-4a+4-3=3(a3-1)-4(a-1)=3(a-1)(a2+a+1)-4(a-1) =(a-1)(3a2+3a+3-4)=(a-1)( 3a2+3a-1) 小结 拆项变化多用于缺项的情况,如整式3a3-4a+1,最高次是三,其它的项分别是一,零。缺二次项。通常拆项的目的是将各项的系数调整趋于一致。 实践题5 分解因式 3a3+5a2-2 指点迷津 三次项的系数为3,二次项的系数为5,提出公因式a2后。下一步没法进行了。所以我们将5a2拆成3a2 +2a2,化为 3a3+3a2+2a2-2. 实践详解 原式=3a3+3a2+2a2-2=3a2(a+1)+2(a2-1) =3a2(a+1)+2(a+1)(a-1) =(a+1)(3a2+2a-2) 技巧六 添项变换 有些多项式类似完全平方式,但直接无法分解因式。既然类似完全平方式,我们就添一项然后去一项凑成完全平方式。然后在考虑用其它的方法。 体验题6 分解因式x2+4x-12 指点迷津 本题用常规的方法几乎无法入手。与完全平方式很象。因此考虑将其配成完全平方式再说。 体验过程 原式= x2+4x+4-4-12 =(x+2)2-16 =(x+2)2-42 =(x+2+4)(x+2-4) =(x+6)(x-2) 小结 添项法常用于含有平方项,一次项类似完全平方式的整式或者是缺项的整式,添项的基本目的是配成完全平方式。 实践题6 分解因式x2-6x+8 实践详解 原式=x2-6x+9-9+8 =(x-3)2-1 =(x-3)2-12 =(x-3+1)(x-3-1) =(x-2)(x-4) 实践题7 分解因式a4+4 实践详解 原式=a4+4a2+4-4a2 =(a2+2)2-4a2 =(a2+2+2a)(a2+2-2a) =(a2+2a+2)(a2-2a+2) 技巧七 换元变换 有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。然后再考虑用公式法或者其它方法。 体验题7 分解因式 (x+1)(x+2)(x+3)(x+4)+1 指点迷津 直接展开太麻烦,我们考虑两两结合。看能否把某些部分作为整体考虑。 体验过程 (x+1)(x+2)(x+3)(x+4)+1 =[(x+1)(x+4)][(x+2)(x+3)]+1 =(x2+5x+4)(x2+5x+6)+1* 令x2+5x=m. 上式变形为(m+4)(m+6)+1 =m2+10m+24+1 =(m+5)2 =(x2+5x+5)2 *式也可以这样变形,令x2+5x+4=m 原式可变为: m(m+2)+1 =m2+2m+1 =(m+1)2 =(x2+5x+5)2 小结 换元法常用于多项式较复杂,其中有几项的部分相同的情况下。如上题中的x2+5x+4与x2+5x+6就有相同的项 x2+5x.,换元法实际上是用的整体的观点来看问题。 实践题8 分解因式x(x+2)(x+3)(x+5)+9 指点迷津 将x(x+5)结合在一起,将(x+2)(x+3)结合在一起.. 实践详解 原式=[x(x+5)][(x+2)(x+3)]+9 =(x2+5x)(x2+5x+6) +9 令x2+5x=m 上式可变形为 m(m+6)+9 =m2+6m+9 =(m+3)2 =(x2+5x+3)2 要想熟练掌握这些技巧,还需要同学们结合平时的练习去体验我们所讲的方法和思路。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 技巧 讲解 练习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文