圆锥曲线上两点关于直线对称问题的解法.doc
《圆锥曲线上两点关于直线对称问题的解法.doc》由会员分享,可在线阅读,更多相关《圆锥曲线上两点关于直线对称问题的解法.doc(6页珍藏版)》请在咨信网上搜索。
圆锥曲线上两点关于直线对称问题的解法 湖北省阳新县高级中学 邹生书 圆锥曲线上两点关于直线对称问题是高考命题的一个热点问题,该问题集中点弦、垂直、直线与圆锥曲线的位置关系、点与圆锥曲线的位置关系、方程函数不等式、点差法等重要数学知识和思想方法于一体,符合在知识网络交汇处、思想方法的交织线上和能力层次的交叉区内设置问题的命题特点,此类试题综合性强,但难度适中,对数学知识和能力的考查具有一定的深度,具有很好的选拔功能,是高考命题的热点.圆锥曲线上两点关于直线对称问题主要有联立方程和点差法两种解法,本文结合典型例题对这两种解法进行对比解读,供参考. 例1(2010年高考安徽卷理科第19题)椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)求的平分线所在的直线的方程;(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由 解(Ⅰ)椭圆的方程为(过程略);(Ⅱ)直线的方程为(过程略); (Ⅲ)法1(联立方程)假设在椭圆上存在关于直线对称的相异两点,设线段的中点为.因为直线与直线垂直,所以设直线的方程为:,由此得将其代入椭圆方程得,①.因为是此方程的两个根,所以,所以.又点在直线上,所以,所以点的坐标为.又点在直线上,所以,解得,所以点的坐标为,因为点的坐标满足椭圆方程,所以点在椭圆上,不在椭圆内,故不存在这样的两点. 另解:将代入①得,因方程有两个相等实根,两点重合这与假设矛盾,故不存在这样的两点. 法2(点差法)假设在椭圆上存在关于直线对称的相异两点,设线段的中点为.因为两点在椭圆上,故有,两式相减得,.又为线段的中点,则有,所以.因为直线与直线垂直,所以,所以,所以①.又点在直线上,所以②. 解①②得点的坐标为,因为点的坐标满足椭圆方程,所以点在椭圆上,不在椭圆内,故不存在这样的两点. 点评 本题第三问是一道探究椭圆上是否存在关于已知直线对称的相异两点的存在性探索题,既可用方程思想求解也可用点差法解答,因为答案是不存在,所以最后的关键是找出矛盾,这个矛盾既可以是假设相异的两点重合,也可以是线段的中点在椭圆上,不在椭圆内. 例2 已知椭圆中心在原点,焦点在轴上,一个顶点的坐标为,且其右焦点到直线的距离为.(1)求椭圆的方程;(2)是否存在斜率为的直线,使与已知曲线交于不同的两点,且有.若存在,求的取值范围;若不存,请说明理由. 解 (1)求得(过程略); (2)法1(联立方程)设直线的方程为,将其代入椭圆方程得.设,则方程的两个根,故.因点在直线上,所以.又点在椭圆内,所以有,即,化简得①. 又,所以,即,化简得②.由①②消去得,,又,所以的取值范围是. 法2(点差法)假设存在这样的直线,设点为线段的中点,设,则,因为点在椭圆上,所以,两式相减得,,即,所以,即①.又,所以,则②.由①②得,所以, 又因为点在椭圆内,所以有,即,解得,又, 所以的取值范围是. 例3试确定实数的取值范围,使抛物线上存在两点关于直线对称. 法1(联立方程)因为设为抛物线上关于对称的两个点,设线段的中点为. 又直线与直线垂直,故可设直线的方程为,将其代入得.因为是该方程的两个根,故.又点在直线上,所以,又因为点在抛物线内,所以即,也就是,,又恒成立,所以. 法2(点差法)显然,设为抛物线上关于对称的两个点,设线段的中点为.则,又直线与直线垂直,所以,即.下同法1略 例4(06年高考福建卷)已知椭圆的左焦点为,为坐标原点.(1)求过点,并且与椭圆的左准线相切的圆的方程;(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点的横坐标的取值范围. 解(1)略;(2)法1(联立方程)设,设为线段的中点,设过左焦点且不与坐标轴垂直的直线的方程为,将其代入椭圆方程整理得,.因为是方程的两个根,所以.又点在直线上,所以,故点的坐标为.又,所以,故直线的点斜式方程为.令得,,又,所以,故点的横坐标的取值范围是 法2(点差法)设,则有,两式相减得,.又设为线段的中点,则有,所以.因为,所以,即,所以线段的垂直平分线的点斜式方程为,令得点的横向坐标为.又,所以,即,又所以即,故点的横坐标的取值范围是. 评注 本题因直线过左焦点,线段的中点必在椭圆内,故需另寻它法求范围.法1用函数值域求范围,法2用不等式求范围. 综上可知,解决圆锥曲线上两点关于直线对称问题,要充分利用“垂直”与“中点”这两个条件,“联立方程”和“点差法”只是将这两个几何条件代数化的一种途径,“主动设点(设弦端点坐标、设弦中点坐标)设线(设直线方程)、引入多元设而不求”是解决这类问题的基本方法和必由之路。问题解决既要有整体思想又要有目标意识和对多元的驾驭能力,对学生的综合能力的考查达到了一定的高度.“联立方程”方法基础传统,“点差法”设点作差是解决中点弦问题的较为特殊的经典方法,在解题教学中要指导学生亲手尝试、切身感悟自我反思总结提炼.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 两点 关于 直线 对称 问题 解法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文