《方程的根与函数的零点》说课稿原创.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程的根与函数的零点 方程 函数 零点 说课稿 原创
- 资源描述:
-
《方程的根与函数的零点》说课稿 原创 各位尊敬的老师,下午好。今天我说课的题目是《方程的根与函数的零点》。下面我将从教材的地位与作用、学情分析,教学目标与重难点分析,教法和学法指导、教学过程设计五个方面来阐述我对本节课的构思。 【教材的地位与作用】 本节课是选自人教版《高中课程标准实验教科书》A版必修1第三章第一节。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 本节是函数应用的第一课,学生在系统地掌握了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个去件上存在零点的判定方法。为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要. 对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。 【学情分析】 1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。 【教材目标】 根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标: (一)认知目标: 1.理解并掌握方程的根与相应函数零点的关系 ,学会将求方程的根的问题转化为求相应函数零点的问题; 2.理解零点存在条件,并能确定具体函数存在零点的区间. (二)能力目标: 培养学生自主发现、探究实践的能力. (三)情感目标: 在函数与方程的联系中体验数学转化思想的意义和价值 【教材重难点】 本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点: 教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件及应用. 教学难点:探究发现函数零点的存在性. 【教法分析】充分发挥教师的主导作用和学生的主体作用.指导学生比较对照区别方程的根与函数图象与X轴的交点的方法,指导学生按顺序有重点地观察函数零点附近的函数值之间的关系的方法,并比较采用 “启发—探究—讨论”式教学模式.这样的教法有利于突出重点——函数的零点与方程的根之间的联系与零点存在的判定条件及应用 【教学过程】 (一)创设情景,提出问题 由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲. 以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。培养学生的归纳能力。理解零点是连接函数与方程的结点。 (二)启发引导,形成概念 利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点. 引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键 . (三)初步运用,示例练习 巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系. (四)讨论探究,揭示定理 通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法.这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程. 函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。 (四)讨论辨析,形成概念 引导学生理解函数零点存在定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解定理的本质.定理不需证明,关键在于让学生通过感知体验并加以确认,有些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。定理的逆命题不成立. (五)观察感知,例题学习 引导学生思考如何应用定理来解决相关的具体问题,接着让学生利用计算器完成对应值表,然后利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识. (六)知识应用,尝试练习 对新知识的理解需要一个不断深化完善的过程,通过练习,进行数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,同时反映教学效果,便于教师进行查漏补缺. (八)课后作业,自主学习 巩固学生所学的新知识,将学生的思维向外延伸,激发学生的发散思维展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




《方程的根与函数的零点》说课稿原创.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/6703780.html