例说因式分解的方法与技巧.doc
《例说因式分解的方法与技巧.doc》由会员分享,可在线阅读,更多相关《例说因式分解的方法与技巧.doc(6页珍藏版)》请在咨信网上搜索。
例说因式分解的方法与技巧 【摘要】多项式的因式分解是多项式乘法的逆过程,也是代数式恒等变形的一个重要组成部分。因式分解在代数的运算、解方程等方面都有极其广泛的应用。本文阐述了因式分解概念,并详细地介绍了因式分解的方法 【关键词】 多项式 因式分解 应用 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的 解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习 的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注 意、运算能力,又可以提高学生综合分析和解决问题的能力。 一、 多项式分解的定义 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分 解,也叫做分解因式。 二、 多项式因式分解的方法 (一)提公因式法 定义: 把多项式中每项都含有的公因式提出来,从而把多项式化成两 因式相乘的形式叫提公因数法。 . 提公因式法基本步骤: 1.找公因式可按照确定公因式的方法先确定系数在确定字母; 2.提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式 除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;提完公因式后,另一因式的项数与原多项式的项数相同。 例1 ; (二)运用公式法 平方差公式:; 完全平方公式:; 立方和公式:; 立方差公式:; 完全立方公式: 运用公式分解因式,就是把一些形如公式的多项式按公式的形式分解成几个 因式的乘积的形式的方法。 在运用乘法公式分解因式时,一定要熟练掌握几个乘法公式,并且把所有要分解的多项式和公式进行对比,观察多项式中的哪一项相当于公式中的哪个字母,同时还要注意它的符号,以免带来错误的解法。 (三) 分组分解法 分组分解法是先根据多项式的特点,将其恰当分组,然后各组分别变形, 如在每组中提公因式,再在各组间提公因式,从而实现分解因。 比如: = = 我们把和分一组,和分一组,利用乘法分配律,两两相配, 立即解除了困难。同样,这道题也可以这样做 = = (四)十字相乘法 十字相乘法实际上是借助十字交叉分解系数,建立的十字交叉线图,既直观 又易于比较系数之间的关系,尤其方便调整因数 ,使之达到分解因式的目的, 这种方法体现了数学中的一种思想,那就是数形结合的思想。 如果有,,且有时,那么 例2:因为 1 -3 × 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以 (五)求根公式法 令多项式,求出其根为……,则该多项式可分解为 ……. 例如在分解时,令=0 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以= (六)配方法 对于直接用十字相乘法比较难的二次三项式的因式分解问题,我们也可以考虑用配方法进行分解。 配方法是数学中极其重要的一个方法,在代数式中利用添项的方法,给原来的多项式配上适当部分,是添加后的多项式的一部分成为一个完全平方式,这种方法叫配方法。 例3: = = =. (七)待定系数法 待定系数法求解函数解析式的有效方法,也是分解因式的强有力工具,用 待定系数法分解因式,首先要根据题设条件制定原式分解后所成的因式乘积的形式,然后再到方程确定待定系数的值。 例4. 解:用待定系数法:设 =把右边展开,合并同类项(把同类项对齐),得 =用恒等式的性质,比较同类项系数,∴=本题也可用换元法: 设, 那么把左边关于的多项式化为关于 的多项式,最后再把换成 -1待定系数法的关键是首先判断分解的形式,要求解题者具有较强的预见性。 (八)换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元. 例5 在分解时,可以令,则 解: 原式= = = = = = 三、多项式因式分解的特点 结果的对称型:由于一个多项式的可约与不可约都是相对于某个数域而言的,因此一道因式分解题究竟分解到何时才算是结局,应是给定数域而异。 对于定义域上的多项式的因式分解,在高等代数中已经证明了这种分解的结果除常数因式外是唯一的。 四、因式分解四个注意 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考 例6 把分解因式。 解:=-=- 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如==的错误 例2把分解因式。 解:= 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公 因式时,先提出这个公因式后,括号内切勿漏掉1。分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每 一个括号内的多项式都不能再分解。防止学生出现诸如=的错误。 考试时应注意: 在没有说明化到实数时,一般只化到有理数就够了 五 、多项式因式分解的一般步骤 (一)如果多项式的各项有公因式,那先提公因式; (二)如果各项没有公因式,那么可尝试用公式或十字相乘法来分解; (三)如果上述方法不能分解,那么可尝试用分组、待定系数法或换元等方法来分解。 六、多项式因式分解的应用 在数学中,因式分解是一种基本的恒等变形,在公式的计算、解方程、 解不等式、等式的证明等中却是不可缺少的一种工具 —5—- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 方法 技巧
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文