实变函数与泛函分析基础(第三版).doc
《实变函数与泛函分析基础(第三版).doc》由会员分享,可在线阅读,更多相关《实变函数与泛函分析基础(第三版).doc(4页珍藏版)》请在咨信网上搜索。
主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型. 学习本章时应注意以下几点. 1、本章的基本概念较多,且有些概念(如内点、聚点、边界点等)相互联系,形式上也常有类似之处,因而容易混淆. 学习这些概念时要细心认真,注意准确牢固地掌握每一个概念的实质,学习时可同其类似的概念对照,注意区别概念间的异同点. 尤其要注意的是,本章对有些概念(如聚点),给出了多种等价(充要)条件,这将有利于理解概念的本质,特别是在讨论某些具体问题时,如能恰当地选用某种条件,常常会给问题的解决带来方便. 所以对等价条件必须深刻理解,熟练灵活地运用. 2、在开集、闭集和完备集的性质的讨论中,开集是基础,因为闭集是开集的补集,完备集是一种特殊的闭集,所以弄清了开集的性质,闭集和完备集的性质也就自然得到了. 3、本章中定理亦较多,对定理的学习,要注意弄清下述三点:一是定理的条件和要证的结论;二是定理的证明方法和推理过程;三是定理的意义和作用. 要特别注意论证思路和方法,这样才能逐步提高分问题和解决问题的能力. 同是定理, 然它们的意义和作用也会不尽相同.本章有些定理,如有限覆盖定理(定理2.2.5),聚点存在定理(定理2.1.5)以及直线上开集的结构定理(定理2.3.1)等都是本章中的重要定理,在今后的学习中常有应用. 4、康托集是本章给出的一个重要例子. 对它的一些特殊性质,在直观上是难以想象的,比如它既是不包含任何区间的完备集,同时它还具有连续基数 ,下章中我们还将证明它的测度为零. 正是因为它的这些“奇怪”性质,使得它在许多问题的讨论中起着重要作用. 复习题 一、判断题 1、设,,则。(× ) 2、设,,则。(× ) 3、设,则。(× ) 4、设点为点集的内点,则。(√ ) 5、设点为点集的外点,则。(√ ) 6、设点为点集的边界点,则。(× ) 7、设点为点集的内点,则为的聚点,反之为的聚点,则为的内点。(× ) 8、设点为点集的聚点,则为的边界点。(× ) 9、设点为点集的聚点,且不是的内点,则为的边界点。(√ ) 10、设点为点集的孤立点,则为的边界点。(√ ) 11、设点为点集的外点,则不是的聚点,也不是的边界点。(√ ) 12、开集中的每个点都是内点,也是聚点。(√ ) 13、开集中可以含有边界点和孤立点。(× ) 14、是开集的内部(开核)。(√ ) 15、任意多个开集的并集仍为开集。(√ ) 16、任意多个开集的交集仍为开集。(× ) 17、有限个开集的交集仍为开集。(√ ) 18、闭集中的每个点都是聚点。(× ) 19、和都是闭集。(√ ) 20、是闭集。(√ ) 21、任意多个闭集的交集仍为闭集。(√ ) 22、任意多个闭集的并集仍为闭集。(× ) 23、有限个闭集的并集仍为闭集。(√ ) 24、是开集是闭集。(√ ) 25、是完全集(完备集)是无孤立点的闭集。(√ ) 二、填空题 1、设,是上的全部有理点,则;的内部 空集 ;。 2、设,,则;的内部 空集 ;。 3、设,,则;的内部;。 4、设是康托(三分)集,则为 闭 集;为 完全 集;没有 内 点; c ; 0 。 5、设为上的开集的构成区间,则满足,且,。 6、设,写出的所有的构成区间。 7、设,写出的所有的构成区间。 8、设为上的闭集,为的孤立点,则必为的两个邻接区间的 公共 端点。 9、设为上的闭集,则的邻接区间必为的构成区间。 三、证明题 1、证明:。 证明:因为,,所以,,,从而 反之,对任意,即对任意,有 为无限集, 从而为无限集或为无限集至少有一个成立,即或,所以,,。综上所述,。 2、证明:若为闭集,则为开集;若为开集,则为闭集。 证明:若为闭集,对任意,有,所以,不是的聚点。注意到为闭集,存在,使得,即,所以,是的内点。故是开集。 (反证法)若不是闭集,则存在的一个聚点,从而。有是开集,存在,所以,这与是的一个聚点矛盾。故为闭集。 3、证明:为闭集。 证明:因为为闭集,则,而,所以。反之,因为,所以,,即为闭集。 4、证明:开集减闭集的差集仍为开集;闭集减开集的差集仍为闭集。 证明:记为开集,为闭集。由于,,且两个开集的交集仍为开集,两个闭集的交集仍为闭集,开集的余集是闭集,闭集的余集是开集,所以,是开集,是闭集。 5、设是上的实值连续函数,则对任意实常数,为开集,为闭集。 证明:对任意,有,由连续函数的局部保号性,存在,使对任意,有,即,所以,,即为的内点。所以为开集。又是开集,所以,为闭集。 6.证明:中任意闭集都可以表示成可数个开集的交。 证:设为任意一个闭集,令,则均是开集,且,从而.下证:. 对,则对,,使得,即 ,于是,从而.但是闭集,所以,故. 因此,可以表示成可数个开集的交。证毕。 7.是R上的连续函数,是开集,则一定是开集. 证明: 若则结论成立;若则对即又是开集,故,又在连续,对上述,使得当时,有,可见,当时,,从而可知,即是开集.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 分析 基础 第三
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文