2013北师大版必修四第一章-三角函数练习题及答案解析课时作业9.doc
《2013北师大版必修四第一章-三角函数练习题及答案解析课时作业9.doc》由会员分享,可在线阅读,更多相关《2013北师大版必修四第一章-三角函数练习题及答案解析课时作业9.doc(6页珍藏版)》请在咨信网上搜索。
一、选择题 1.已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则该函数的图像( ) A.关于点(,0)对称 B.关于直线x=对称 C.关于点(,0)对称 D.关于直线x=对称 【解析】 由于T==π,∴ω=2,则f(x)=sin(2x+).当x=时,sin(+)=0, ∴该函数的图像关于点(,0)对称,故选A. 【答案】 A 2.函数y=8sin(6x+)取最大值时,自变量x的取值集合是( ) A.{x|x=-+,k∈Z} B.{x|x=+,k∈Z} C.{x|x=,k∈Z} D.{x|x=+,k∈Z} 【解析】 ∵y的最大值为8,此时sin(6x+)=1,即6x+=2kπ+(k∈Z), ∴x=+,(k∈Z),故选B. 【答案】 B 3.(2013·济南高一检测)若函数f(x)=sin ωx(ω>0)在区间[0,]上单调递增,在区间[,]上单调递减,则ω=( ) A.3 B.2 C. D. 【解析】 由题意知,函数在x=处取得最大值1,所以1=sin,故选C. 【答案】 C 4.下列函数中,图像关于直线x=对称的是( ) A.y=sin(2x-) B.y=sin(2x-) C.y=sin(2x+) D.y=sin(+) 【解析】 验证法,当x=时,A.sin(-)=sin≠±1;B.sin(-)=sin=1,故选B. 【答案】 B 5.将函数y=sin(2x+)的图像向右平移个单位,所得图像所对应的函数是 ( ) A.非奇非偶函数 B.既奇又偶函数 C.奇函数 D.偶函数 【解析】 将函数y=sin(2x+)的图像向右平移个单位后,得函数y=sin[2(x-)+]=sin(2x-+)=sin 2x,为奇函数,故选C. 【答案】 C 二、填空题 6.当-≤x≤时,函数f(x)=sin(x+)的最大值是________,最小值是________. 【解析】 ∵-≤x≤,∴-≤x+≤π, ∵当x+=-,即x=-时,f(x)min=-, 当x+=,即x=时,f(x)max=. 【答案】 - 7.关于f(x)=4sin(2x+)(x∈R)有下列结论: ①函数的最小正周期为π; ②表达式可改写为f(x)=4cos(2x-); ③函数的图像关于点(-,0)对称; ④函数的图像关于直线x=-对称. 其中正确结论的序号为________. 【解析】 显然函数f(x)的周期T==π,①正确;由于f(x)=4sin(2x+)=4cos[-(2x+)]=4cos(-2x+)=4cos(2x-),所以②正确;当x=-时,sin(-+)=sin0=0,所以③正确,④不正确. 【答案】 ①②③ 图1-8-7 8.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图1-8-7所示,则f(1)+f(2)+f(3)+…+f(2 013)的值等于________. 【解析】 由图可知该函数的周期为8,得ω=,A=2,代入点(2,2),得sin(×2+φ)=1,+φ=,得φ=0,∴y=2sin x.根据对称性有f(1)+f(2)+f(3)+…+f(8)=0,从而f(1)+f(2)+…+f(2 013)=251×[f(1)+f(2)+…+f(8)]+f(1)+f(2)+f(3)+f(4)+f(5)=251×0+2sin +2sin +2sin π+2sin π+2sin π=2+. 【答案】 2+ 三、解答题 9.(2013·石家庄高一检测)已知函数f(x)=2sin(2x-),x∈R. (1)写出函数f(x)的对称轴方程、对称中心的坐标; (2)求函数f(x)在区间[0,]上的最大值和最小值. 【解】 (1)由2x-=kπ+(k∈Z)得,x=+(k∈Z). 所以函数f(x)的对称轴方程为x=+,k∈Z. 由2x-=kπ得x=+(k∈Z). 所以函数f(x)的对称中心为(+,0),k∈Z. (2)∵0≤x≤,∴-≤2x-≤π, ∴当2x-=-,即x=0时, f(x)取得最小值-1; 当2x-=,即x=时,f(x)取得最大值2. 10.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图像的一条对称轴是直线x=. (1)求φ; (2)求函数y=f(x)的单调增区间. 【解】 (1)∵x=是函数y=f(x)的图像的对称轴, ∴sin(2×+φ)=±1. ∴+φ=kπ+,k∈Z. ∵-π<φ<0,∴φ=-. (2)由(1)知φ=-,因此y=sin(2x-). 由题意得2kπ-≤2x-≤2kπ+,k∈Z,即kπ+≤x≤kπ+,k∈Z, ∴函数y=sin(2x-)的单调增区间为[kπ+,kπ+](k∈Z). 11.记函数f(x)=5sin(x-)(k≠0). (1)写出f(x)的最大值M,最小值m,最小正周期T; (2)试求正整数k的最小值,使得当自变量x在任意两相邻整数间(包括整数本身)变化时,函数f(x)至少有一个值是M,一个值是m. 【解】 (1)M=5,m=-5,T==. (2)由题意知f(x)在相邻两整数之间(包括整数本身)至少有一个M和一个m,∴最小正周期T≤1,则≤1,∴|k≥10π,又k为正整数,∴正整数k的最小值为32. 系列资料- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 北师大 必修 第一章 三角函数 练习题 答案 解析 课时 作业
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文