山西省太原五中2012-2013学年高二数学10月月考试题-理-新人教A版.doc
《山西省太原五中2012-2013学年高二数学10月月考试题-理-新人教A版.doc》由会员分享,可在线阅读,更多相关《山西省太原五中2012-2013学年高二数学10月月考试题-理-新人教A版.doc(14页珍藏版)》请在咨信网上搜索。
太 原 五 中 2012—2013学年度第一学期月考(10月) 高 二 数 学(理) 一、选择题:本大题共10小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案填在答卷纸上. 1.在空间,下列命题正确的是 A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行 2.如右图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为 A. B. C. D. 3.已知m、n为两条不同的直线,为两个不同的平面,下列四个命题中,正确的命题个数是 ①; ②若 ③; ④ A.1 B.2 C.3 D.4 4.一个几何体的三视图如右图所示,其中正视图中△ABC是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为 A.12 B. C. D.6 5.在正三棱锥中,相邻两侧面所成二面角的取值范围是 A. B. C.(0,) D. 6.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是 A.BD∥平面CB1D1 B.AC1⊥BD C.AC1⊥平面CB1D1 D.异面直线AD与CB1角为60° 7.已知正四棱锥的侧棱长与底面边长都相等,是 的中点,则所成的角的余弦值为 A. B. C. D. 8.如图在正三棱锥A-BCD中, E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是 9.一个几何体的三视图及长度数据如图, 则该几何体的表面积与体积分别为 A、 B、 C、 D、 10.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 A. B. C. D. 二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答卷纸上. 11.已知点G是△ABC的重心,O是空间任一点,若++= m,则实数m= . 12.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 13.一个几何体的三视图如下图所示,则该几何体外接球的表面积为 14.如图,设是棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有个顶点;②有条棱;③有个面;④表面积为;⑤体积为.其中正确的结论是____________.(要求填上所有正确结论的序号) 太 原 五 中 2012—2013学年度第一学期月考(10月) 高二数学答卷纸(理) 一、选择题 (每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题(每小题4分) 11. ;12. ; 13. ; 14. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分) 如图,在三棱锥中,底面, 点,分别在棱上,且 (Ⅰ)求证:平面; (Ⅱ)当为的中点时,求与平面所成的角的正弦值; 16.(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,,A B E F C D A . (1)求证:AC⊥BF; (2)求点A到平面FBD的距离. 17.(本题满分10分) 如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (1) 求异面直线AF与BG所成的角的大小; (2) 求平面APB与平面CPD所成的锐二面角的余弦值 18. (本小题满分12分) 如图,在梯形中,∥,,,平面平面,四边形是矩形,,点在线段上. M F E C D B A (1)求证:平面BCF⊥平面ACFE; (2)当为何值时,∥平面?证明你的结论; 19.(本小题12分)如图, 、分别是正四棱柱上、下底面的中 心,是的中点,. (Ⅰ)求证:∥平面; (Ⅱ当取何值时,在平面内的射影恰好为的重心? D A1 D1 C1 B1 E1 B A C P 太 原 五 中 2012—2013学年度月考 高二数学答案 一、选择题 (每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案 D A A C A D C B C C 二、填空题(每小题4分) 11. 3 ;12. ; 13. ; 14. ①②⑤ 三、解答题:解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分) 如图,在三棱锥中,底面, 点,分别在棱上,且 (Ⅰ)求证:平面; (Ⅱ)当为的中点时,求与平面所成的角的正弦值; 【解法1】(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC. 又,∴AC⊥BC. ∴BC⊥平面PAC. (Ⅱ)∵D为PB的中点,DE//BC, ∴, 又由(Ⅰ)知,BC⊥平面PAC, ∴DE⊥平面PAC,垂足为点E. ∴∠DAE是AD与平面PAC所成的角, ∵PA⊥底面ABC,∴PA⊥AB,又PA=AB, ∴△ABP为等腰直角三角形,∴, ∴在Rt△ABC中,,∴. ∴在Rt△ADE中,, ∴与平面所成的角的正弦值为 【解法2】如图,以A为原煤点建立空间直角坐标系, 设,由已知可得 . (Ⅰ)∵, ∴,∴BC⊥AP. 又∵,∴BC⊥AC,∴BC⊥平面PAC. (Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点, ∴, ∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E. ∴∠DAE是AD与平面PAC所成的角, ∵, ∴. ∴与平面所成的角的正弦值为 16.(本题满分10分) 如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,,. (1)求证:AC⊥BF; (2)求点A到平面FBD的距离. A B E F C D A 解法1:由得,故AD2=AC2+CD2,,,所以CD⊥CA 以CD为x轴,CA为y轴,以CE为z轴建立空间坐标系, (1)C(0,0,0),D(1,0,0),A(0,,0),F(0, ,),B(-1,,0), ,, , (2), 由,可得, 点A到平面FBD的距离为d, 解法2 :(1)由得,故BC2=AC2+AB2,,,所以AC⊥AB 因为ACEF是矩形,AC⊥AF,所以AC⊥平面ABF,故AC⊥BF (2)由,得 17. (本题满分10分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (3) 求异面直线AF与BG所成的角的大小; (4) 求平面APB与平面CPD所成的锐二面角的余弦值. (5) 解 由题意可知:AP、AD、AB两两垂直,可建立空间直角坐标系A-xyz 由平面几何知识知:AD=4, D (0, 4, 0), B (2 , 0 , 0 ), C ( 2, 2, 0 ), P (0, 0, 2), E (0, 0, 1), F (1 ,0, 1), G (1 ,1 ,1) (1)=(1,0,1),=(-1,1,1) ∴·=0, ∴AF与BG所成角为 . (2) 可证明AD⊥平面APB, ∴平面APB的法向量为n=(0,1,0) 设平面CPD的法向量为m=(1,y,z) 由 Þ 故m=(1,1,2) ∵cos<m,n>= ∴平面APB与平面CPD所成的锐二面角的余弦值为. 18. (本小题满分10分) 如图,在梯形中,∥,,M F E C D B A ,平面平面,四边形是矩形,,点在线段上. (1)求证:平面BCF⊥平面ACFE; (2)当为何值时,∥平面?证明你的结论; (Ⅰ)在梯形中,, 四边形是等腰梯形, 且 又平面平面,交线为, 平面 ∴平面BCF⊥平面ACFE; (Ⅱ)解法一、当时,平面, 在梯形中,设,连接,则 ,而, ,四边形是平行四边形, 又平面,平面平面 解法二:当时,平面, 由(Ⅰ)知,以点为原点,所在直线为坐标轴,建立空间直角坐标系, x D y z C O F B A E 则,,,, , 平面, 平面与、共面, 也等价于存在实数、,使, 设. , 又,, 从而要使得:成立, 需,解得 当时,平面 18.(本小题12分) 19.(本小题12分)D A1 D1 C1 B1 E1 B A C P 如图, 、分别是正四棱柱上、下底面的中 心,是的中点,. (Ⅰ)求证:∥平面; (Ⅱ当取何值时,在平面内的射影恰好为的重心? 以点为原点,直线所在直线分别为轴, 建立如图所示的空间直角坐标系,不妨设, 则得、、、、 (Ⅰ)证明 由上得、、 ,设得 解得, ∴ , ∴∥平面 (Ⅱ)解 由(Ⅰ)知的重心为,则, 若在平面内的射影恰好为的重心,则有,解得 ∴当时,在平面内的射影恰好为的重心. 14 用心 爱心 专心- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山西省 太原 2012 2013 学年 数学 10 月月 考试题 新人
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文