第二十四章圆(复习).doc
《第二十四章圆(复习).doc》由会员分享,可在线阅读,更多相关《第二十四章圆(复习).doc(3页珍藏版)》请在咨信网上搜索。
《圆》练习题 1.下列语句中不正确的有( ) ①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦; ③圆是轴对称图形,任何一条直径都是它的对称轴; ④半圆是弧。 A.1个 B.2个 C.3个 D.4个 2.⊙O内最长弦长为m,直线ι与⊙O相离,设点O到ι的距离为d,则d与m的关系是( ) A.d=m B.d>m C.d> D.d< 3.已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是( ) A.1 cm B.7 cm C.1 cm或7 cm D.无法确定 4.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合)连结AP, A E O F B P PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF= 5.已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是( ) A.外离 B.外切 C.相交 D.内切 6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是 A.80° B.160° C.100° D.80°或100° 7.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______________°. 8.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 . 9.已知,如图,是以线段为直径的的切线,交于点,过点作弦垂足为点,连接 (1)仔细观察图形并写出四个不同的正确结论:①________,②__________,③________,④____________ (2)=,=,求的半径 10.在直角坐标平面内,为原点,点的坐标为(1,0),点的坐标为(0,4),直线轴(如图所示).点与点关于原点对称,C M O x y 1 2 3 4 A 1 B D 直线(为常数)经过点,且与直线相交于点D,连结OD. (1)求的值和点D的坐标; (2)设点P在轴的正半轴上, 若△POD是等腰三角形,求点的坐标. 11.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为( ) A.5cm B.6cm C.7cm D.8cm 12.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ) A. cm B.9 cm C.cm D.cm O E D C B A 13.如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm, EB=2cm,∠CEA=30°,求CD。 14.如图,在平面直角坐标系中,⊙A与y轴相切于原点O, 平行于x轴的直线交⊙A于M、M两点,若点M的坐标是(-4,-2), 则点N的坐标为( )A.(-1,-2) B.(1,2) C.(-1.5,-2) D.(1.5,-2) 15.如图,⊙O的直径AB=4,∠ABC=30°,BC=4,D是线段BC的中点。 (1)试判断点D与⊙O的位置关系,并说明理由; (2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线。 16.如图,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=4cm. (1)求圆心O到弦MN的距离; (2)求∠ACM的度数. 17.如图,已知直角梯形ABCD,∠B=90°,AD∥BC,并且AD+BC=CD,O为AB的中点. (1)求证:以AB为直径的⊙O与斜腰CD相切; (2)若OC=8cm,OD=6cm,求CD的长. 18.如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点。 (1)求这个抛物线的解析式; (2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N。求当t 取何值时,MN有最大值?最大值是多少? (3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 十四 复习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文