《常微分方程》答案 习题2.3.doc
《《常微分方程》答案 习题2.3.doc》由会员分享,可在线阅读,更多相关《《常微分方程》答案 习题2.3.doc(11页珍藏版)》请在咨信网上搜索。
习题2.3 1、验证下列方程是恰当方程,并求出方程的解。 1. 解: ,=1 . 则 所以此方程是恰当方程。 凑微分, 得 : 2. 解: , . 则 . 所以此方程为恰当方程。 凑微分, 得 3. 解: 则 . 因此此方程是恰当方程。 (1) (2) 对(1)做的积分,则 = (3) 对(3)做的积分,则 = = 则 故此方程的通解为 4、 解: , . . 则此方程为恰当方程。 凑微分, 得 : 5.(sin-cos+1)dx+( cos- sin+)dy=0 解: M=sin-cos+1 N= cos- sin+ =- sin-cos- cos+sin =- sin-cos- cos+sin 所以,=,故原方程为恰当方程 因为sindx-cosdx+dx+ cosdy- sindy+dy=0 d(-cos)+d (sin)+dx+d(-)=0 所以,d(sin-cos+x -)=0 故所求的解为sin-cos+x -=C 求下列方程的解: 6.2x(y-1)dx+dy=0 解:= 2x , =2x 所以,=,故原方程为恰当方程 又2xydx-2xdx+dy=0 所以,d(y-x)=0 故所求的解为y-x=C 7.(e+3y)dx+2xydy=0 解:edx+3ydx+2xydy=0 exdx+3xydx+2xydy=0 所以,d e( x-2x+2)+d( xy)=0 即d [e( x-2x+2)+ xy]=0 故方程的解为e( x-2x+2)+ xy=C 8. 2xydx+( x+1)dy=0 解:2xydx+ xdy+dy=0 d( xy)+dy=0 即d(xy+y)=0 故方程的解为xy+y=C 9、 解:两边同除以 得 即, 故方程的通解为 10、 解:方程可化为: 即, 故方程的通解为: 即: 同时,y=0也是方程的解。 11、 解:方程可化为: 即: 故方程的通解为: 12、 解:方程可化为: 故方程的通解为 : 即: 13、 解:这里 , 方程有积分因子 两边乘以得:方程是恰当方程 故方程的通解为: 即: 14、 解:这里 因为 故方程的通解为: 即: 15、 解:这里 方程有积分因子: 两边乘以得: 方程为恰当方程 故通解为 : 即: 16、 解:两边同乘以得: 故方程的通解为: 17、试导出方程具有形为和的积分因子的充要条件。 解:若方程具有为积分因子, (是连续可导) 令 , . , , , 方程有积分因子的充要条件是:是的函数, 此时,积分因子为 . 令 , 此时的积分因子为 18. 设及连续,试证方程为线性方程的充要条件是它有仅依赖于的积分因子. 证:必要性 若该方程为线性方程,则有 , 此方程有积分因子,只与有关 . 充分性 若该方程有只与有关的积分因子 . 则为恰当方程 , 从而 , , . 其中 .于是方程可化为 即方程为一阶线性方程. 20.设函数f(u),g(u)连续、可微且f(u)g(u),\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)]) 证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得: uyf(xy)dx+uxg(xy)dy=0 则=uf+uy+yf=+-yf == = 而=ug+ux+xg=+- xg == 故=,所以u是方程得一个积分因子 21.假设方程(2.43)中得函数M(x,y)N(x,y)满足关系= Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43) 有积分因子u=exp(+) 证明:M(x,y)dx+N(x,y)dy=0 即证u+M=u+N u(-)=N- Mu(-)=Nef(x) -M eg(y)u(-)=e(Nf(x)-Mg(y)) 由已知条件上式恒成立,故原命题得证。 22、求出伯努利方程的积分因子. 解:已知伯努利方程为: 两边同乘以,令, 线性方程有积分因子: ,故原方程的积分因子为: ,证毕! 23、设是方程的积分因子,从而求得可微函数, 使得试证也是方程的积分因子的充要条件是其中是的可微函数。 证明:若,则 又 即为的一个积分因子。 24、设是方程的两个积分因子,且常数,求证(任意常数)是方程的通解。 证明:因为是方程的积分因子 所以 为恰当方程 即 , 下面只需证的全微分沿方程恒为零 事实上: 即当时,是方程的解。证毕!- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常微分方程 常微分方程答案 习题2.3 微分方程 答案 习题 2.3
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文