七年级数学-第4章一元一次方程全章导学案-苏科版.doc
《七年级数学-第4章一元一次方程全章导学案-苏科版.doc》由会员分享,可在线阅读,更多相关《七年级数学-第4章一元一次方程全章导学案-苏科版.doc(32页珍藏版)》请在咨信网上搜索。
课题 4.1从问题到方程(1) 自主空间 学习目标 1.体会方程是刻画实际问题中数量关系的有效的数学模型。 2.初步学会根据实际问题的意义设未知数,并会列出方程 学习重难点 1、理解刻画实际问题中数量关系的有效的数学模型。 2、根据实际问题的意义设出未知数,并列出方程。 3.初步认识方程与现实世界的密切联系,感受数学的价值 4, 根据实际问题的意义设未知数,并列出方程。 教学流程 预 习 导 航 一、情境创设: 同学们,我能猜出你们的年龄,相信吗? 试一试:告诉我你的年龄乘以2减1得数是多少?(生答,如:27等) 聪明的你能知道这是为什么吗? 二、探索新知: 如果设你的年龄为x岁,则得 2x-1=27 这个等式你在小学见过吗?它有什么特征? ___________________________________________________ 从而引出方程的概念: ___________________________________________叫做方程。 练一练: 1.下列各式中,是方程的有 ( )个 (1) 2x+3 (2)2+5 =7 (3)–2x=3x+2 (4)–3+0.4y=8(5) x+1>3 A.2 B.3 C.4 D.5 2、设某数为x,根据下列条件列方程. (1)某数的65%与–2的差等于它的一半. (2)某数的 与5的差等于它的相反数. 3.某排球队参加排球联赛,胜一场得2分,负一场得一分。该队赛了12场,共得20分,该队胜了多少场?提问:设该队胜了x 场,你能用方程表达吗? 合 作 探 究 一.例题分析 1.列出下列各题的方程: (1) x的2倍与2的和等于x的3倍与3的差————— (2) 9与x的2倍的差等于x与6的和的 2.某校图书馆购进了甲、乙两种系列丛书,甲种丛书每本16元,乙种丛书每本5元,乙种丛书比甲种丛书多20本,共花去520元。 设购甲种丛书x本。 (1) 请用含有x的式子表示下列关系: 乙种丛书购买了 本,甲种丛书花了 元,乙种丛书花了 元; (2)根据题意列出方程 。 3、某件商品打8折比打9折少花两元钱,则这件商品原价多少元?(只列方程) 思路:商品原价×0.9-商品原价×0.8=2 4.用一辆面包车和几辆客车接送216名师生参加某次活动,已知一辆面包车可坐16人,设还需用x辆40坐的客车,试用方程表示这个实际问题中数量之间的相等关系?(注意引导学生的解题格式) 学生思考一:设用x辆40座的客车,则客车能接送多少人? 学生思考二:列方程,等量关系是什么? 师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”. 变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车? 变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?…… 二.展示交流 1.一(13)班分两组参加学校某项活动,第一组28人,第二组38人,现在重新分组,需要从第二组调多少人到第一组能使第一组人是第二组的2倍。 2.2005年10月9日,我国登山队测定珠穆朗玛峰的高度为8844.43米,它每年约1. 27厘米的速度增高.从2005年以后,经过多少年后珠穆朗玛峰的高度为海拔8845.065米? 小明用50元钱购买了面值为1元和5角的邮票共40张,他买了多少张面值为1元的邮票? 3.某市出租车的收费标准是:起步价为8元,起步里程为3km(3km以内按起步价付费) ,3km后每千米收2元.某人乘出租车从甲地到乙地共付费16元,求甲、乙两地的路程. 当 堂 达 标 一、选择题 1.已知下列方程:① x-2=;② 0.3x =1;③ = 5x -1;④x2-4x=3; ⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( ) A.2 B.3 C.4 D.5 2.如果方程(m-1)x + 2 =0是表示关于x的一元一次方程,那么m的取值范围是( ) A.m0 B.m1 C.m=-1 D.m=0 3、已知某数x,若比它的大1的数的相反数是5,求x.则可列出方程 二、 解答题 1、小张去商店买练习本,回来后问同学们:“店主告诉我,如果多买一些就给我八折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格多少元?”这里如果设每本价格x元,则列方程得什么?你能写出所列方程吗? 2、A、B两地相距50千米,甲、乙两人分别从A、B两地出发,相向而行,甲每小时比乙多行2千米,若两人同时出发,经过3小时相遇.如果设甲的速度为x千米/小时,可列怎样的方程,请列出来. 3、有一根铁丝,第一次用了它的一半少1米,第二次用去了剩余的一半多1米,结果还剩2.5米,问这根铁丝原有多长?(只列方程不解答) 学习反思: (主编人:孟凯) 课题 4.1从问题到方程(2) 自主空间 学习目标 1.经过对多个实际问题中的数量关系的分析,进一步体会方程是刻画实际问题的有效的数学模型。 2.了解方程、一元一次方程的概念。 学习重难点 通过观察,归纳一元一次方程的概念。 教学流程 预 习 导 航 一、 情境创设 1、甲、乙两城市间的铁路经过技术改造,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h.甲、乙两城市间的路程是多少? 2、一个长方形足球场的周长是300m,它的长比宽多30m。求这个足球场的长。 二、 探索新知 1. 你能找出问题中的相等关系吗? 2. 你能用方程表达吗? 3. 你所表达的方程有那些特点?你能再写出几个类似的方程吗? (学生观察、归纳得出一元一次方程的概念) 4.(1)用方程表达实际问题中数量关系的基本步骤是 。 (2)上面列出的方程有哪些共同的特点? (3)请写出两个一元一次方程 , 5.下5.列各式中哪些是方程?哪些是一元一次方程? ① ,② ,③ ,④ ,⑤ ,⑥,⑦ 合 作 探 究 一.例题分析 1、 用方程描述下列实际问题中数量之间的相等关系 (1) 某数的2倍与它的的和等于10。 (2) 某数与8的和的平方等于它的15倍减去5。 (3) 某数的与2的差比它的倒数大4。 (4) 一个长方形足球场的周长是300m,它的长比宽多30m,求这个足球场的长。 (5)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队一共比赛6场,甲队保持不败,共得14分,甲队胜了多少场? 2. 某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满。问:大船、小船各租了多少艘? 说明:(1)把实际问题抽象为数学问题,再从数学问题到列出方程.关键在于弄清题意,恰当地巧设未知数,找出问题中的相等关系. (2)设元设得巧,方程列得妙;设元设得好,方程列的得快.一般问什么则设什么,有时设未知的另一个量来求也较方便. (3)解题时,找出问题中的相等关系,要深刻理解题意,把握题中隐含条件及内在联系(如题中等量关系语句、量与量之间的关系) . 3、某通讯公司有两种手机话费付费方式:第一种方式不交月租费,每分钟付话费0.6元;第二种方式每月交月租50元,每分钟付话费0.2元。一个月通话多少时间,两种付费方式费用相同? 例2、甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜了多少场? 二.展示交流 (1)一件衣服标价132元,若以9折出售,仍可获利10%,求这件衣服的进价. (2)国家规定,职工全年月平均工作日为21天,某单位小张的日工资为35元,休息日的加班工资是原工资的2倍,如果他十月份的实发工资为1085元,那么十月份小张加了几天班? (3)我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若超过7立方米,则超过部分按每立方米2元收费。如果某居民今年10月缴纳了17元的水费,求这户居民的用水量? (4)先读懂古诗,然后回答诗中的问题 巍巍古寺在山林,不知寺内有几僧;三百六十四只碗,看看用尽不差争; 三人共食一只碗,四人共吃一碗羹;请问先生明算者,算来寺内几多僧? 当 堂 达 标 一、选择题 1、某商场上月的营业额是x万元,本月比上月增长15%,那么本月的营业额是( ) A.(x+1)·15%万元 B. 15%·x万元 C.(1+15%)x万元 D.(1+15%)2 x万元 2、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?如果设还要租x辆客车,可列方程为( ) A.44x-328=64 B.44x+64=328 C.328+44x=64 D.328+64=44x 3、某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为小时,则可列方程得 ( ) A. B. C. D. 二、填空题 1、 设某数为x,它的4倍是它的3倍与7的差,则列出的方程为______________. 2、买3支钢笔,5支圆珠笔共用了26.8元,一支钢笔是3.6元,请写出圆珠笔的价格x满足的方程_________________. 3、一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________. 三、解答题 1、为创建全国文明城,扬州市政府准备对瘦西湖某水上工程进行改造,若请甲工程队单独做此工程需3个月完成,若请乙工程队单独做此工程需6个月完成,现在甲、乙两队合作,你猜几个月能完成?你能列出方程吗? 2、美国篮球巨星乔丹在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么乔丹两分球投中多少球?罚球投中多少球?(罚球投中一个一分)请列出方程. 3、一种商品按成本增加20%的定价出售,每件商品定价是120元,问该商品的成本价是多少元?(只列方程) 4.水资源短缺令人担忧,为鼓励节约用水,我市制定了居民用水标准,标准依一户的人口数定的,超过标准部分加价收费.设三口之家用水标准内部分每立方米水费为1.3元,超过标准部分每立方米水费为2.9元.某三口之家某月用水12立方米,交水费22元,为求该市三口之家每月的标准用水量,请列出方程. 学习反思: (主编人;孟凯) 课题 4.2解一元一次方程(等式的基本性质) 自主空间 学习目标 1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程. 2.经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式. 3.强调检验的重要性,养成检验反思的好习惯 学习重难点 比较方程的解和解方程的异同;归纳等式的性质;利用性质解方程. 教学流程 预 习 导 航 一 、情境创设 1. 方程2x+1=5是什么方程? 2. 如何求方程2x+1=5中x的值? 二 、探索新知: 1、做一做:填表 x 1 2 3 4 5 6 7 2x+1 当x= 时,方程2x+1=5成立。 2、试一试: 分别把0、1、2、3、4代入下列方程,哪一个值能使方程成立: (1) x-1=5; (2) 3x-2=4x-3 由此得出方程的解和解方程的概念: ———————————————————————————— 归纳出等式的基本性质:————————————————。 合 作 探 究 一.例题分析 例1、解下列方程: (1)x+5=2 (2)-2x=4 解:略(鼓励学生用等式的基本性质解题,解方程就是把方程变形为x=a的过程,培养学生解方程要检验的习惯)。 练一练 1、检验下列各题括号中的是否是前面方程的解. ① (x=-1) ② (x=6) 2、解下列方程: (1)x+2=-6 (2)-3x=3-4x (3)x=3 (4)-6x=2 3、在公元前1600年左右遗留下来的古埃及文献中,有这样一个问题:“它的全部,它的,和等于19” .你能求出这个数吗? 4、已知关于的方程的解是1,求的值 二.展示交流 1. 用等式的基本性质解下列方程: (1)x+32=23 (2)-7x=63 (3)-2x+4=-3x (4)x+5x=-3 (5)-x+1=- 2.写出关于x的形如ax+b=c(a≠0)的一元一次方程,使它的解分别为: (1)-3 (2) 2. 当x是什么数时,3x+2x 与1-x的值相等? 3. 若方程3x+1=7的解也是关于x的方程2x+a=7的解,则a的值是多少? 小明编了这样一道题“我们班有男生25人,比女生的2倍少15人,你猜我们班有多少名同学?”你会解这道题吗 三.提炼总结 1 你认为这节课你学到了什么?请你运用今天所学的知识看看老师的做法是否正确? 解方程4x=2x 解 两边都除以x,得4=2 2.你能利用等式性质把”-1=x”变形为”x=-1”吗 当 堂 达 标 一. 选择题 1、方程=x-2的解是( ) A.5 B.-5 C.2 D.-2 2、解方程x=,正确的是 ( ) A.x==x=; B.x=, x= C.x=, x=; D.x=, x= 3、下列变形是根据等式的性质的是 ( ) A.由2x﹣1=3得2x=4 B.由x2=x得 x=1 C.由x2=9得 x=3 D.由2x﹣1=3x 得5x=﹣1 4、下列变形错误的是( ) A.由x + 7= 5得x+7-7 = 5-7 ; B.由3x-2 =2x + 1得x= 3 C.由4-3x = 4x-3得4+3 = 4x+3x D.由-2x= 3得x= - 5、已知方程①3x-1=2x+1 ② ③④中,解为x=2的是方程 ( ) A.①、②和③; B.①、③和④ C.②、③和④; D.①、②和④ 6、某数的4倍减去3比这个数的一半大4,则这个数为 __________. 7、当m= __________时,方程2x+m=x+1的解为x=-4. 当a= ____________时,方程3x2a-2=4是一元一次方程. 8、求作一个方程,使它的解为-5,这个方程为__________. 二、解下列方程 (1)6x=3x-12 (2)2y―=y―3 (3)-2x=-3x+8 (4)56=3x+32-2x (5)3x―7+6x=4x―8 (6)7.9x+1.58+x=7.9x-8.42 三、拓展 2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解. 学习反思: (主编人;孟凯) 课题 4.2解一元一次方程(2) 自主空间 学习目标 1. 会应用移项、合并同类项法则解一些简单的一元一次方程 2. 通过具体的实例感知、归纳移项法则,进一步探索方程的解法. 3. 进一步认识解方程的基本变形,感悟解方程过程中的转化思想 学习重难点 移项法则的归纳与应用 教学流程 预 习 导 航 问题: 1. 解方程x+2=-6,你有那些方法呢 2. 这样的方程怎么解? (1)x+32=23 (2)-7x=63 (3)-2x+4=-3x (4)x+5x=-3 合 作 探 究 一.例题分析 例1、解方程4x-15=9 2.解方程2x=5x-21 用移项法解方程须注意: (1)目标明确,解方程目标是把方程变形为x=a的形式; (2)移项时,要移谁,移到哪? (3)怎样移项? 方法一是利用加、减法互逆运算这一关系; 方法二是利用等式的性质; 方法三是移项法则. 二.展示交流 1.解方程3x+1=5-x时,下列移项正确的是( ) A.3x+x=5+1 B.3x-x=-5-1 C.1-5=-3x+x D.3x+x=5-1 2.解方程时,习惯上把含有未知数的项移到等号的一边,而把常数项移到等号的另一边 如:解方程3x-1=2x+5,移项可得3x-________=5+__________. 3. 解下列方程: (1)5x+2=-8 (2)3x=5x-14 (3)5-x=4x (4)9x+7=5x-1 重点强调:(1)移动的项要变号,不移动的项不变号。 (2) 移项时,左右两边先写原来不移动的项,再写移来的项。 4、解方程x-3=4-x (注意解题格式的规范性和检验的必要性) 5. 解方程 (1)x=9-x (2) 当 堂 达 标 一、 选择题 1、方程3x+6=2x-8移项后,正确的是( ) A.3x+2x=6-8 B.3x-2x=-8+6 C.3x-2x=-6-8 D.3x-2x=8-6 2、方程7(2x-1)-3(4x-1)=11去括号后,正确的是( ) A.14x-7-12x+1=11 B. 14x-1-12x-3=11 C. 14x-7-12x+3=11 D. 14x-1-12x+3=11 3、如果代数式与的值互为相反数,则的值等于( ) A. B. C. D. 4、如果与是同类项,则是( ) A.2 B.1 C. D.0 5、已知矩形周长为20cm,设长为cm,则宽为 ( ) A. B. C. D. 二、 填空题 1、方程2x-0.3=1.2+3x移项得 . 2、方程12-(2x-4)= -(x-7)去括号得 . 3、若︱a﹣1︱+(b+2)2=0,则ab= . 4、若3x+2与﹣2x+1互为相反数,则x-2的值是 . 5、若2(4a﹣2)﹣6 = 3(4a﹣2),则代数式a2﹣3a + 4= . 三、 解答题 1、解下列方程 (1)3(2x+5)=2(4x+3)-3 (2)4y﹣3(20﹣y)=6y﹣7(9﹣y) 学习反思: (主编人;孟凡柏) 课题 4.2解一元一次方程(3) 自主空间 学习目标 知识与技能:会应用去括号、移项、合并同类项、系数化为1的方法解一些简单的一元一次方程. 过程与方法:经历探索用去括号的方法解方程的过程,进一步熟悉方程的变形,弄清楚每步变形的依据. 情感、态度与价值观:初步掌握解方程的一般步骤,培养学生的概括能力和耐心、细致的学习态度。 学习重点 1 应用“去括号”等方法解一些简单的一元一次方程。 2.初步掌握解方程的一般步骤,培养学生的概括能力和耐心、细致的学。 学习难点 应用“去括号”等方法解一些简单的一元一次方程。 教学流程 预习导航 1、去括号法则: 括号前是“+”号, 。 括号前是“-”号, 。 2、将(3x+2)-2(2x-1)去括号正确的是( ) A 3x+2-2x+1 B 3x+2-4x+1 C 3x+2-4x-2 D 3x+2-4x+2 去括号易错点:①漏乘 ②符号 3、小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁? 4、如何给代数式2(x-1)-6进行去括号? 5、如何解方程2(x-1)-6=20,学生展开讨论,寻求解法 合作探究 一、概念探究 在上面问题中是如何去掉方程中的括号?依据是什么? 二、例题分析 例1、解方程 -3(x+1)=9 分析:方法一:1、先将方程左边去括号。 2、观察去括号后的方程,与上次课学习过的方程一样吗? 方法二:方程两边同除以-3,得到与上次课同类的方程。 解:略。 例2 解方程2(2x+1)=1-5(x-2) 解:略 三、展示交流 1、解下列方程: (1) (2) (3) (4) 2、某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵。这个班共有多少学生? 3、m=2x+1,n=x-1,且m-3n=0,求x的值以及m+n的值. 4、当x取何值时,代数式3(2-x) 和2(3+x)的值相等? 5、当y取何值时,2(3y+4)的值比5(2y-7)的值大3? 四、提炼总结 你认为括号的依据是什么?去括号时要注意什么? 师生共同小结,关键是去括号时”漏乘 和符号”的问题.即: (1)注意解法的灵活性,不要过分强求学生按固定格式来解,可适当引导学生找出较好的解题方法和书写过程. (2)学生去括号时错误之处:数字系数漏乘某一项;乘后各项符号的确定不准确. (3)系数化为1时,注意不要和移项搞混,建议整数和小数系数可用除法,分数系数可改用乘法. 当堂达标 一、选择题 1、方程7(2x-1)-3(4x-1)=11去括号后,正确的是( ) A.14x-7-12x+1=11 B. 14x-1-12x-3=11 C. 14x-7-12x+3=11 D. 14x-1-12x+3=11 2、下列方程中解是x=0的方程为( ) A. 0.3x-4=5.7x+1 B. 1-{3x-[(4x+2)-3]}=0 C. D. 3、当x=2时,代数式ax-2的值是4,那么当x=-2时,代数式的值是( ) A. –4 B. –8 C. 8 D. 2 4、方程12-(2x-4)= -(x-7)去括号得 . 5、若2(4a﹣2)﹣6 = 3(4a﹣2),则代数式a2﹣3a + 4= . 6、解下列方程 (1) (2)4y﹣3(20﹣y)=6y﹣7(9﹣y) 7、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法. 8、小明今年6岁,他的爷爷62岁,几年后,小明的年龄是他爷爷年龄的。 9、编写一道应用题,使其适合一元一次方程4(x-6)+6×5=222,并请你给出解答. 10、有一张正方形纸片,第一次将它撕成4小片,第2次将其中的一小张又撕成4小片,以后每一次都将其中的一小张撕成4小片.那么: (1)撕了5次后,一共有几张纸片? (2)撕了n次后, 一共有几张纸片? (3)能否撕成2007张纸片? 能否撕成2008张纸片? 学习反思: (主编人:孟凡柏) 课题 4.2解一元一次方程(4) 自主空间 学习目标 知识与技能:知道解一元一次方程的一般步骤,能灵活运用去分母、去括号、移项、合并同类项、系数化为1等五大步骤解一元一次方程. 过程与方法:巩固方程解法,经历求解过程,能体会到解法应根据具体方程本身特点而定. 情感、态度与价值观:体会化归思想——把复杂变简单,将未知变已知的作用,体会数学的应用价值. 学习重点 用“去分母”法解一元一次方程。 学习难点 1、应用“去分母”法解一元一次方程。 2、掌握解一元一次方程的一般步骤,并能灵活运用。 教学流程 预习导航 一 情境创设: 观察方程=4与方程4x-8=12 (1)它们有什么相同之处和不同之处? (2)它们是通过怎样变形得到的? (3)从这两个方程的变形中,你发现了什么? 合作探究 一、例题分析 例 1、解方程=x+1 师生共同分析,怎样去分母,依据是什么? 解:略(强调去分母时常数项1也要乘以最简公分母6) 例 2、解方程 (2x-5)=(x-3)- 问题1:最简公分母如何取? 问题2:去分母时应注意什么? 解:略(去分母时应找到所有分母的最小公倍数) 议一议 如何解方程-=3 问题1:你还记得小学中学过的分数的基本性质吗? 问题2:本题中两个分母0.2与0.5分别乘以多少就可以化为整数了? 问题3:本题是直接去分母呢还是先将分母转化为整数后再处理? 想一想 去分母的依据是什么?去分母要注意什么? 二、展示交流 1. 解方程-2=x-时,去分母正确的是( ) A 2(x-3)-2=x-5(x+1) B 2x-3-20=10x-5x+1 C 2(x-3)-20=10x-5(x+1) D (x-3)-20=10x-(x+1) 2.解下列方程: (1)= (2)= 合作探究 (3)+=1 (4) -= (5)(3y-1)=y-2 (6)-=1 三、提炼总结 步骤 具体做法 依据 注意事项 去分母 在方程的两边都乘各分母的最小公倍数 等式性质2 不要漏乘不含分母的项 去括号 先去小括号,再去中括号,最后去大括号 乘法分配律 去括号法则 括号前是“-”时,去掉括号时括号内各项均要变号 移项 将含未知数的项移到方程的一边,常数项移到方程的另一边 移项法则 移项要变号 合并同类项 把方程变形成 的形式 合并同类项法则 系数相加,字母及字母的指数均不变 系数化为1 把方程的两边都除以未知数的系数(不为0) 等式性质2 分子、分母不要颠倒 (1)解方程的过程就是通过去分母、去括号、移项、合并同类项、(未知数)系数化为1等步骤,把一个一元一次方程逐步转化为x=a的形式.这是一个等量变形的过程,也是一个化归的过程. (2)具体解方程时,可根据具体情况,有些步骤可能用不上;有些步骤可以前后顺序颠倒;有时还可以省略一些步骤,以使运算简化. 当堂达标 1、若x、y互为相反数,且(x+y-3)(x-y-2)=9,则x+y=_______, x-y=__________;x=__________,y=___________. 2、解下列关于x的方程:-=1(a≠b). 3、若m , x都为正整数,且的倒数与的值相等,你能求出m, x的值吗? 4、小明解方程=-1去分母时,方程右边的-1没有乘3,因而求得的解为x=2,试求a的值,并正确的解方程. 5、当x=5时,代数式的值是4,当x=__________时, 代数式的值是-. 学习反思: (主编人:孟凡柏) 课题 4.3用方程解决问题(1) 自主空间 学习目标 知识与技能:大致了解用方程解决问题的一般步骤和方法,明确其关键是找出能表示实际问题全部含义的相等关系. 过程与方法:经历活动和思考、交流与讨论、分析解决问题等过程,体会数学的应用价值. 情感、态度与价值观:经历“问题情景——建立数学模型——解释、应用与拓展”的过程,感悟数学建模思想. 学习重点 1、能用一元一次方程解决简单的实际问题。 2、能根据实际问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力。 学习难点 用一元一次方程解决实际问题,并能进行检验。 教学流程 预习导航 有某种三色冰淇淋45g,咖啡色、红色和白色配料比为1:2:6,这种三色冰淇淋中咖啡色、红色、白色配料分别是多少? 可以用方程方法求解 可以用算术方法求解 学生自主探究 借用上面的对话,学生思考: (1)如果用算术解法你能解出结果吗?如何求? (2)若用方程求解,如何设未知数?等量关系式是什么? (3)如果在三色冰淇淋中,咖啡色、红色和白色配料比是2∶3∶5,那么如何设未知数?如何列方程和求解呢? 合作探究 一、例题分析 例1:一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3。现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?_ 问:题中有什么等量关系。 做桌面的木材+做桌腿的木材=3.8立方米 如何设未知数? 如何找出问题中的等量关系? 用方程解决问题有哪些步骤? 例2:两人一组做游戏: (1)每人准备一本月历,在月历的同一行上任意圈出相邻的的个数,并把这4个数的和告诉同学,让同学求出这4个数; 合作探究 (2)在月历上任意找1个数以及它的上、下、左、右的4个数,每人分别把这5个数的和告诉同学,让同学求出这5个数。 分析:日历中存在的数量关系:竖列上相邻两数之差为7,而且下面的数比上面的数大7;横行上相邻两数相差1,而且右面的数比左面的数大1。 二、展示交流 1、某商店今年共销售21英寸,25英寸,29英寸3种彩电共360台,它们的销售数量的比是1:7:4,这三种彩电各销售多少台? 2、某学生在暑假里给同学寄了2封信和一些明信片,一共花了4.6元。已知每封信的邮费为0.8元,每张明信片的邮费为0.6元,他寄了多少张明信片? 3、一本书封面的周长为68cm,长与宽的比是15:19,这本书封面长和宽分别为多少?面积呢? 4、某人从甲地到乙地,全程的乘车,全程的乘船,最后又步行4km到达乙地,甲、乙两地的路程是多少? 三、提炼总结 用方程解决问题的一般解法步骤: 审:审题,分析题中的已知量、未知量,明确它们之间的关系。找出能表示应用题全部含义的一个相等关系。 设:设一个合适的未知数(一般情况下求什么,就设什么为x),要写出单位名称。 列:根据找出的等量关系列出方程。 解:解所列出的方程,求出未知数的值。 验:检验求出的未知数的值1是否适合原方程2是否符合题意。 答:写出答案(包括单位名称)。 当堂达标 1、某月日历上竖列相邻的三个数,它们的和是39,则该列的第一个数是( ) A.6 B.12 C.13 D.14 2、几名同学在日历的纵列上圈出三个数,算出它们的和,其中正确的一个是 A.38 B.18 C.75 D.57 3、学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了_________ 张,相等关系是________________________,列出方程___________________. 4、甲、乙、丙三数之比为2:3:7,这三个数的和为48,求这三个数。若设一份为x,则甲数为_____,乙数为_______,丙数为 ______,列方程为__________。 5、某饮料店的A种果汁比B种果汁贵1元,小明和他的四位朋友共要了2杯A种果汁和3 杯B种果汁,一共花了17元,问这两种果汁的单价分别是多少? 6、某报报道了2004年非师范类大中专毕业生和研究生的就业形势,其中关于研究生学历的工作岗位是供不应求,具体的情况是:实际需要的研究生人数比实际毕业的研究生人数多1124人,它们之间的比是309:28.则实际需要研究生多少人?实际毕业的研究生多少人? 7、如图所示,小明将一个正方形的纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每个长条的面积是多少? 学习反思: (主编人:孟凡柏) 课题 4.3用方程解决问题(2) 自主空间 学习目标 知识与技能:能利用表格作为建模策略,分析实际问题中的数量关系列方程解决问题. 过程与方法:进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力. 情感、态度与价值观:综合运用已有知识,在探索和解决问题的过程中获得体验,发展自己的思维能力. 学习重点 1、列表分析问题中的数量关系。 2、找出问题中的等量关系,运用一元一次方程解决问题。 学习难点 1、用列表法分析问题 2、用方程解决问题。 教学流程 预习导航 1、某校七年级共有65名同学在植树节活动中担任运土工作。现有45根扁担,请你安排一下有多少人抬土,多少人挑土,可使扁担和人数恰好相配? 抬土 挑土 人数/个 扁担/根 问题1:题中有哪些已知的量与未知的量? 问题2:你如何理解“扁担和人数恰好相配”? 问题3:抬土一般是多少人?要几根扁担?挑土呢? 问题4:请你根据以上问题,填写上面表格。 问题5:你能找到题中的等量关系吗?如果能,请根据你列出的等量关系列出方程。 2、广东宏远队的朱芳雨是中国男篮的主力前锋.在一场洲际杯比赛中,他一人独得23分(不含罚球得分).已知他投进3分球比2分球少4个,他一共投进了几个3分球和几个2分球? 问题:题中涉及哪几个量?(投中3分球和2分球的个数关系,得分);相等关系是什么?(3分球的得分+2分球的得分=23) 3分球 2分球 个数- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 一元一次方程 全章导学案 苏科版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文