第二篇 函数与基本初等函数Ⅰ第3讲 函数的奇偶性与周期性.doc
《第二篇 函数与基本初等函数Ⅰ第3讲 函数的奇偶性与周期性.doc》由会员分享,可在线阅读,更多相关《第二篇 函数与基本初等函数Ⅰ第3讲 函数的奇偶性与周期性.doc(10页珍藏版)》请在咨信网上搜索。
第3讲 函数的奇偶性与周期性 【2013年高考会这样考】 1.判断函数的奇偶性. 2.利用函数奇偶性、周期性求函数值及求参数值. 3.考查函数的单调性与奇偶性的综合应用. 【复习指导】 本讲复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能.重点解决综合利用函数的性质解决有关问题. 基础梳理 1.奇、偶函数的概念 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称. 2.奇、偶函数的性质 (1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)在公共定义域内 ①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积都是偶函数; ③一个奇函数,一个偶函数的积是奇函数. 3.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 一条规律 奇、偶函数的定义域关于原点对称. 函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件. 两个性质 (1)若奇函数f(x)在x=0处有定义,则f(0)=0. (2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上: 奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. 三种方法 判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法. 三条结论 (1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称. (2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b-a)为周期的周期函数. (3)若f(x+a)=-f(x)或f(x+a)=或f(x+a)=-,那么函数f(x)是周期函数,其中一个周期为T=2a; (3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=2|a-b|. 双基自测 1.(2011·全国)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f=( ). A.- B.- C. D. 解析 因为f(x)是周期为2的奇函数,所以f=-f=-f=-.故选A. 答案 A 2.(2012·福州一中月考)f(x)=-x的图象关于( ). A.y轴对称 B.直线y=-x对称 C.坐标原点对称 D.直线y=x对称 解析 f(x)的定义域为(-∞,0)∪(0,+∞),又f(-x)=-(-x)=-=-f(x),则f(x)为奇函数,图象关于原点对称. 答案 C 3.(2011·广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ). A.f(x)+|g(x)|是偶函数 B.f(x)-|g(x)|是奇函数 C.|f(x)|+g(x)是偶函数 D.|f(x)|-g(x)是奇函数 解析 由题意知f(x)与|g(x)|均为偶函数,A项:偶+偶=偶;B项:偶-偶=偶,B错;C项与D项:分别为偶+奇=偶,偶-奇=奇均不恒成立,故选A. 答案 A 4.(2011·福建)对于函数f(x)=asin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是( ). A.4和6 B.3和1 C.2和4 D.1和2 解析 ∵f(1)=asin 1+b+c,f(-1)=-asin 1-b+c且c∈Z,∴f(1)+f(-1)=2c是偶数,只有D项中两数和为奇数,故不可能是D. 答案 D 5.(2011·浙江)若函数f(x)=x2-|x+a|为偶函数,则实数a=________. 解析 法一 ∵f(-x)=f(x)对于x∈R恒成立,∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0. 法二 由f(-1)=f(1), 得|a-1|=|a+1|,得a=0. 答案0 考向一 判断函数的奇偶性 【例1】►下列函数: ①f(x)= + ;②f(x)=x3-x;③f(x)=ln(x+);④f(x)=;⑤f(x)=lg.其中奇函数的个数是( ). A.2 B.3 C.4 D.5 [审题视点] 利用函数奇偶性的定义判断. 解析 ①f(x)=+的定义域为{-1,1},又f(-x)=±f(x)=0, 则f(x)=+是奇函数,也是偶函数; ②f(x)=x3-x的定义域为R, 又f(-x)=(-x)3-(-x)=-(x3-x)=-f(x), 则f(x)=x3-x是奇函数; ③由x+>x+|x|≥0知f(x)=ln(x+)的定义域为R, 又f(-x)=ln(-x+)=ln= -ln(x+)=-f(x), 则f(x)为奇函数; ④f(x)=的定义域为R, 又f(-x)==-=-f(x), 则f(x)为奇函数; ⑤由>0得-1<x<1,f(x)=ln的定义域为(-1,1), 又f(-x)=ln=ln-1=-ln=-f(x), 则f(x)为奇函数. 答案 D 判断函数的奇偶性的一般方法是:(1)求函数的定义域;(2)证明f(-x)=f(x)或f(-x)=-f(x)成立;或者通过举反例证明以上两式不成立.如果二者皆未做到是不能下任何结论的,切忌主观臆断. 【训练1】 判断下列函数的奇偶性: (1)f(x)=; (2)f(x)=x2-|x-a|+2. 解 (1)解不等式组 得-2≤x<0,或0<x≤2, 因此函数f(x)的定义域是[-2,0)∪(0,2], 则f(x)=. f(-x)==-=-f(x), 所以f(x)是奇函数. (2)f(x)的定义域是(-∞,+∞). 当a=0时,f(x)=x2-|x|+2, f(-x)=x2-|-x|+2=x2-|x|+2=f(x). 因此f(x)是偶函数; 当a≠0时,f(a)=a2+2, f(-a)=a2-|2a|+2, f(-a)≠f(a),且f(-a)≠-f(a). 因此f(x)既不是偶函数也不是奇函数. 考向二 函数奇偶性的应用 【例2】►已知f(x)=x(x≠0). (1)判断f(x)的奇偶性;(2)证明:f(x)>0. [审题视点] (1)用定义判断或用特值法否定;(2)由奇偶性知只须求对称区间上的函数值大于0. (1)解 法一 f(x)的定义域是(-∞,0)∪(0,+∞) ∵f(x)=x=·. ∴f(-x)=·=·=f(x). 故f(x)是偶函数. 法二 f(x)的定义域是(-∞,0)∪(0,+∞), ∵f(1)=,f(-1)=,∴f(x)不是奇函数. ∵f(x)-f(-x)=x+x =x=x=x(-1+1)=0, ∴f(-x)=f(x),∴f(x)是偶函数. (2)证明 当x>0时,2x>1,2x-1>0, 所以f(x)=x>0. 当x<0时,-x>0,所以f(-x)>0,又f(x)是偶函数, ∴f(-x)=f(x),所以f(x)>0. 综上,均有f(x)>0. 根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可. 【训练2】 已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f(1-m)+f(1-m2)<0的实数m的取值范围. 解 ∵f(x)的定义域为[-2,2], ∴有 解得-1≤m≤.① 又f(x)为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减, ∴f(1-m)<-f(1-m2)=f(m2-1)⇒1-m>m2-1, 即-2<m<1.② 综合①②可知,-1≤m<1. 考向三 函数的奇偶性与周期性 【例3】►已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1, (1)求证:f(x)是周期函数; (2)当x∈[1,2]时,求f(x)的解析式; (3)计算f(0)+f(1)+f(2)+…+f(2013)的值. [审题视点] (1)只需证明f(x+T)=f(x),即可说明f(x)为周期函数; (2)由f(x)在[0,1]上的解析式及f(x)图象关于x=1对称求得f(x)在[1,2]上的解析式; (3)由周期性求和的值. (1)证明 函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数. (2)解 当x∈[1,2]时,2-x∈[0,1], 又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2]. (3)解 ∵f(0)=0,f(1)=1,f(2)=0, f(3)=f(-1)=-f(1)=-1 又f(x)是以4为周期的周期函数. ∴f(0)+f(1)+f(2)+…+f(2013) =f(2 012)+f(2 013)=f(0)+f(1)=1. 判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题. 【训练3】 已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为( ). A.-1 B.1 C.0 D.无法计算 解析 由题意,得g(-x)=f(-x-1), 又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x), ∴f(x-1)=-f(x+1), ∴f(x)=-f(x+2),∴f(x)=f(x+4), ∴f(x)的周期为4, ∴f(2 013)=f(1),f(2 015)=f(3)=f(-1), 又∵f(1)=f(-1)=g(0)=0, ∴f(2 013)+f(2 015)=0. 答案 C 规范解答3——如何解决奇偶性、单调性、周期性的交汇问题 【问题研究】 函数的奇偶性、单调性、周期性是函数的三大性质,它们之间既有区别又有联系,高考作为考查学生综合能力的选拔性考试,在命题时,常常将它们综合在一起命制试题. 【解决方案】 根据奇偶性的定义知,函数的奇偶性主要体现为f(-x)与f(x)的相等或相反关系,而根据周期函数的定义知,函数的周期性主要体现为f(x+T)与f(x)的关系,它们都与f(x)有关,因此,在一些题目中,函数的周期性常常通过函数的奇偶性得到.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律,因此,在解题时,往往需借助函数的奇偶性或周期性来确定函数在另一区间上的单调性,即实现区间的转换,再利用单调性来解决相关问题. 【示例】►(本题满分12分)(2011·沈阳模拟)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x. (1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积; (3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间. 第(1)问先求函数f(x)的周期,再求f(π); 第(2)问,推断函数y=f(x)的图象关于直线x=1对称,再结合周期画出图象,由图象易求面积; 第(3)问,由图象观察写出. [解答示范] (1)由f(x+2)=-f(x)得, f(x+4)=f[(x+2)+2]=-f(x+2)=f(x), 所以f(x)是以4为周期的周期函数,(2分) ∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π) =-(4-π)=π-4.(4分) (2)由f(x)是奇函数与f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x). 故知函数y=f(x)的图象关于直线x=1对称.(6分) 又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.(8分) 当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则 S=4S△OAB=4×=4.(10分) (3)函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k+3](k∈Z).(12分) 关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. 【试一试】 已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ). A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11) [尝试解答] 由函数f(x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递增,又f(x-4)=-f(x)⇒f(x-8)=-f(x-4)=f(x),故函数f(x)以8为周期,f(-25)=f(-1),f(11)=f(3)=-f(3-4)=f(1),f(80)=f(0),故f(-25)<f(80)<f(11).故选D. 答案 D .精品资料。欢迎使用。 高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u .精品资料。欢迎使用。 高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二篇 函数与基本初等函数第3讲 函数的奇偶性与周期性 第二 函数 基本 初等 奇偶性 周期性
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文