无理数与实数教学设计.doc
《无理数与实数教学设计.doc》由会员分享,可在线阅读,更多相关《无理数与实数教学设计.doc(3页珍藏版)》请在咨信网上搜索。
无理数、实数·教学设计 教学目标 1.知识与技能 了解无理数和实数的概念,知道实数和整轴上的点一一对应,能估算无理数的大小; 2.过程与方法 注重小组合作与探索,同时注重有理数与实数的对比. 3.情感、态度与价值观 养成合作意识与观察分析的能力. 教学重点难点 重点:实数的意义和实数的分类; 难点:体会数轴上的点与实数是一一对应的; 课时安排 1课时 教与学互动设计 第1课时 (一)创设情境,导入新课 问题1 上一节我们探究了的大小,知道它在1与2之间,那么到底是怎样的数呢,和我们学过的有理数相不相同呢? (二)合作交流,解读探究 探究 小组合作,把下列有理数写成小数的形式,你有什么发现? 3,,,,,. 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3=3.0,=-0.6,=5.875,=,=,=. 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数. 探究 那能不能化简成有限小数或无限循环小数? 以其化简的图片展示,清晰看出只能化简成无限不循环小数,并展示π的图片。 归纳 无限不循环小数又叫无理数。 师生合作 将有理数与无理数用集合的形式画出来,能发现什么? 结论 有理数和无理数统称为实数. 试一试 把实数试着来分类.(类比有理数分类) 按照定义分类 按照性质分类 我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢? 探究 如图10—3—1所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? 动手观察 学生拿出前一天准备的卡片按照探究题上描出点O,在纸上画出数轴如图操作。发现OO′的长是这个圆的周长π,所以O′的坐标是π. 这样,无理数π可以用数轴上的点表示出来. 探究 以单位长度为边长画一个正方形(如图10—3—2所示),以原点为圆心,正方形对角线为半径画弧,与正半轴的交点表示什么(以小正方形的面积为切入点) 总结 1.事实上,每一个无理数都可以用数轴上的一个点表示出来.这就是说,数轴上的点有些表示有理数,有些表示无理数. 当数从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数. 2.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大. (三)应用迁移,巩固提高 例1 把下列各数分别填入相应的集合里: ,,-3,141,,,,,0.101 001 000 1…,1.414,-0.020 202…, {正有理数: } {负有理数: } {正无理数: } {负无理数: } 【评析】 本题考查无理数的定义,解题思路是按无理数的定义判断,本题的易错点是将,1.414当成无理数,解题关键是透彻理解无理数的定义. 解:{正有理数:,,1.414} {负有理数:-3.141,,-0.202 020…} {正无理数:,,0.101 001 000 1…} {负无理数:,} 拓展 已知m是的整数部分,n是的小数部分,试计算m-n的值. 【点拨】 (1)认定<<故m=5 (2)是由其整数部分和小数部分组成的,即=m+n 所以n=-5. 【答案】 m-n=6- (四)总结反思,拓展升华 小结 1.什么叫做无理数? 2.什么叫做有理数? 3.实数与数轴上的点一一对应吗? (五)课堂跟踪反馈 1.下列各数中,是无理数的是(C) A.-1.732 B.1.414 C. D.3.14 2.已知实数a、b、c在数轴上的位置如图所示, 比较大小 【答案】 b>0>a>c- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无理数 实数 教学 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文