2022-2023学年江西省南康中学、于都中学高一上数学期末学业质量监测模拟试题含解析.doc
《2022-2023学年江西省南康中学、于都中学高一上数学期末学业质量监测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江西省南康中学、于都中学高一上数学期末学业质量监测模拟试题含解析.doc(14页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是() A.至少有一个白球与都是红球 B.恰好有一个白球与都是红球 C.至少有一个白球与都是白球 D.至少有一个白球与至少一个红球 2.已知是偶函数,它在上是减函数.若,则的取值范围是() A. B. C. D. 3.已知直线经过点,倾斜角的正弦值为,则的方程为( ) A. B. C. D. 4.若,则是( ) A.第一象限或第三象限角 B.第二象限或第四象限角 C.第三象限或第四象限角 D.第二象限或第三象限角 5.主视图为矩形的几何体是( ) A. B. C. D. 6.设且,则“函数在上是减函数”是“函数在上是增函数”的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.已知函数,则函数的最小正周期为 A. B. C. D. 8.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为 A. B. C. D. 9.已知定义域为的函数满足,且,若,则( ) A. B. C. D. 10.函数在区间(0,1)内的零点个数是 A.0 B.1 C.2 D.3 11.若,均为锐角,,,则() A. B. C. D. 12.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长() A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.空间两点与的距离是___________. 14.下列命题中,正确命题的序号为______ ①单位向量都相等;②若向量,满足,则; ③向量就是有向线段;④模为的向量叫零向量; ⑤向量,共线与向量意义是相同的 15.经过,两点的直线的倾斜角是__________ . 16.______. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.(1)计算 (2)已知,求的值 18.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元 (1)写出年利润万元关于年销售量万部的函数解析式; (2)年销售量为多少万部时,利润最大,并求出最大利润. 19.已知函数 (1)试判断函数的奇偶性并证明; 20.已知函数(且),在上的最大值为. (1)求的值; (2)当函数在定义域内是增函数时,令,判断函数的奇偶性,并证明,并求出的值域. 21.已知,且α是第二象限角. (1)求的值; (2)求的值. 22.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时, ()求的解析式 ()若在上为增函数,求的取值范围 ()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可. 【详解】解:对于A,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A错误; 对于B,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球, 所以两个事件互斥而不对立,故B正确; 对于C,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C错误; 对于D,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球” ,所以这两个事件不是互斥的,故D错误. 故选:B. 2、C 【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式. 【详解】由于函数是偶函数,由得, 又因为函数在上是减函数,所以在上是增函数, 则,即,解得. 故选:C. 3、D 【解析】由题可知,则 ∵直线经过点 ∴直线的方程为,即 故选D 4、D 【解析】由已知可得即可判断. 【详解】,即,则且, 是第二象限或第三象限角. 故选:D. 5、A 【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果. 【详解】A选项,圆柱的主视图为矩形,故A正确; B选项,圆锥的主视图为等腰三角形,故B错; C选项,棱锥的主视图为三角形,故C错; D选项,球的主视图为圆,故D错. 故选:A. 【点睛】本题主要考查简单几何体的正视图,属于基础题型. 6、A 【解析】函数在上是减函数,根据指数函数的单调性得出;函数在上是增函数,得出且,从而可得出答案. 【详解】函数在上是减函数,则; 函数在上是增函数,则,而且,解得:且, 故“函数在上是减函数”是“函数在上是增函数”的充分不必要条件. 故选:A. 7、C 【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性 【详解】,其中,所以函数的最小正周期, 选择C 【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得 8、B 【解析】设,直线的斜率为,直线的斜率为.有 直线的斜率与直线的斜率的差是1,所以. 通分得:,整理得:. 故选B. 点睛:求轨迹方程的常用方法: (1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0 (2)待定系数法:已知所求曲线的类型,求曲线方程 (3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程 (4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程 9、A 【解析】根据,,得到求解. 【详解】因为,, 所以, 所以, 所以, 所以, , 故选:A 10、B 【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个 考点:导函数,函数零点 11、B 【解析】由结合平方关系可解. 【详解】因为为锐角,,所以, 又,均为锐角,所以,所以, 所以 . 故选:B 12、C 【解析】求出长后可得,再由弧长公式计算可得 【详解】由题意,解得,所以,, 所以弧的长为 故选:C 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】根据两点间的距离求得正确答案. 【详解】. 故答案为: 14、④⑤ 【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案 . 【详解】对于①.单位向量方向不同时,不相等,故不正确. 对于②.向量,满足时,若方向不同时,不相等,故不正确. 对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量. 向量可以用有向线段来表示,二者不等同,故不正确, 对于④.根据零向量的定义,正确. 对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确. 故答案为:④⑤ 15、 【解析】经过,两点的直线的斜率是 ∴经过,两点的直线的倾斜角是 故答案为 16、 【解析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可. 【详解】, 根据十进制化为二进制“倒序取余法”如下: 可得. 故答案为: 【点睛】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、 (1);(2)3. 【解析】(1)由题意结合对数的运算法则和对数恒等式的结论可得原式的值为; (2)令,计算可得原式. 试题解析: (1) ; (2)设则, 所以 . 18、(1);(2)年销售量为45万部时,最大利润为7150万元. 【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果; (2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润. 【详解】解:(1)依题意,生产万部手机,成本是(万元), 故利润,而, 故, 整理得,; (2)时,,开口向下的抛物线,在时,利润最大值为; 时,, 其中,在上单调递减,在上单调递增,故 时,取得最小值, 故在 时,y取得最大值 而, 故年销售量为45万部时,利润最大,最大利润为7150万元. 【点睛】方法点睛: 分段函数求最值时,需要每一段均研究最值,再比较出最终的最值. 19、(1)为奇函数;证明见解析; (2). 【解析】(1)利用奇函数的定义即证; (2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求. 【小问1详解】 当时,,则, 当; 当时,,满足; 当时,,则, , 所以对,均有,即函数为奇函数; 【小问2详解】 ∵函数为R上的奇函数,且,,, 所以函数在上为增函数,则在定义域内为增函数, 解法一:因函数为奇函数,且在定义域内为增函数, 则当时,为增函数 当时, 因为,只需要,则; 解法二:因为函数为奇函数,且在定义域内为增函数, 则当时,为增函数 设对于任意,且, 则有 因为,则,又因为,则, 欲使当时,为增函数,则,所以, 当时,;;, 所以,为R上增函数时, 20、(1)或 (2)为偶函数,证明见解析,. 【解析】(1)分别在和时,根据函数单调性,利用最大值可求得; (2)由(1)可得,根据奇偶性定义判断可知其为偶函数;利用对数型复合函数值域的求解方法可求得值域. 【小问1详解】 当时,为增函数,,解得:; 当时,为减函数,,解得:; 综上所述:或. 【小问2详解】 当函数在定义域内是增函数时,,由(1)知:; , 由得:,即定义域为; 又,是定义在上的偶函数; , 当时,,,即的值域为. 21、(1) (2) 【解析】(1)根据三角函数的同角关系求得,结合角的象限即可得出结果; (2)利用诱导公式将原式化简即可得出结果. 【小问1详解】 因为,所以. 因为α是第二象限角,所以. 【小问2详解】 . 22、(1);(2);(3)见解析. 【解析】分析:()当时,,; 当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数. 详解:()当时,, ; 当时,, ∴, ()由题设知,对恒成立, 即对恒成立, 于是,, 从而 ()因为为偶函数,故只需研究函数在的最大值 令, 计算得出 ()若,即, , 故此时不存在符合题意的 ()若,即, 则在上为增函数, 于是 令,故 综上,存在满足题设 点睛:本题主要考查利用导数研究函数的单调性、函数奇偶性的应用及利用单调性求参数的范围,属于中档题.利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式或恒成立问题求参数范围.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 江西省 南康 中学 于都 高一上 数学 期末 学业 质量 监测 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文