选修2-1第一章1.2充分必要条件学案.doc
《选修2-1第一章1.2充分必要条件学案.doc》由会员分享,可在线阅读,更多相关《选修2-1第一章1.2充分必要条件学案.doc(5页珍藏版)》请在咨信网上搜索。
1.2 充分条件和必要条件(1) 【教学目标】 1.从不同角度帮助学生理解充分条件、必要条件与充要条件的意义; 2.结合具体命题,初步认识命题条件的充分性、必要性的判断方法; 3.培养学生的抽象概括和逻辑推理的意识. 【教学重点】构建充分条件、必要条件的数学意义; 【教学难点】命题条件的充分性、必要性的判断. 【教学过程】 一、复习回顾 1.命题:可以判断真假的语句,可写成:若p则q. 2.四种命题及相互关系: 3.请判断下列命题的真假: (1)若,则; (2)若,则; (3)若,则; (4)若,则 二、讲授新课 1.推断符号“”的含义: 一般地,如果“若,则”为真, 即如果成立,那么一定成立,记作:“”; 如果“若,则”为假, 即如果成立,那么不一定成立,记作:“”. 用推断符号“和”写出下列命题:⑴若,则;⑵若,则; 2.充分条件与必要条件 一般地,如果,那么称p是q的充分条件;同时称q是p的必要条件. 如何理解充分条件与必要条件中的“充分”和“必要”呢? 由上述定义知“”表示有必有,所以p是q的充分条件,这点容易理解.但同时说q是p的必要条件是为什么呢?q是p的必要条件说明没有就没有,是成立的必不可少的条件,但有未必一定有. 充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.它符合上述的“若p则q”为真(即)的形式.“有之必成立,无之未必不成立”. 必要性:必要就是必须,必不可少.它满足上述的“若非q则非p”为真(即)的形式.“有之未必成立,无之必不成立”. 命题按条件和结论的充分性、必要性可分为四类: (1)充分必要条件(充要条件),即 且; (2)充分不必要条件,即且; (3)必要不充分条件,即且; (4)既不充分又不必要条件,即且. 三、例题 . 例1:下列“若,则”形式的命题中,哪些命题中的是的充分条件? (1)若,则; (2)若,则; (3)若,则为减函数; (4)若为无理数,则为无理数. (5)若,则. 例2:指出下列命题中,p是q的什么条件. ⑴p:,q:; ⑵p:两直线平行,q:内错角相等; ⑶p:,q:; ⑷p:四边形的四条边相等,q:四边形是正方形 例3:判断下列命题的真假: (1)“是6的倍数”是“是2的倍数”的充分条件;(2)“”是“”的必要条件. 小结:1。从不同角度理解充分条件、必要条件的意义 (1)借助“子集概念”理解充分条件与必要条件。设为两个集合,集合是指 。这就是说,“”是“”的充分条件,“”是“ ” 的必要条件。对于真命题“若p则q”,即,若把p看做集合,把q看做集合,“”相当于“”。 (2)要注意转换命题判定,培养思维的灵活性 例:已知p:;q:x、y不都是,p是q的什么条件? 分析:要考虑p是q的什么条件,就是判断“若p则q”及“若q则p”的真假性 从正面很难判断是,我们从它们的逆否命题来判断其真假性 “若p则q”的逆否命题是“若x、y都是,则”真的 “若q则p”的逆否命题是“若,则x、y都是”假的 故p是q的充分不必要条件 注:当一个命题很难判断其真假性时,我们可以从其逆否命题来着手. 练习:已知p:或;q:或,则是的什么条件? 方法一: 显然是的的充分不必要条件 方法二:要考虑是的什么条件,就是判断“若则”及“若则”的真假性 “若则”等价于“若q则p”真的 “若则”等价于“若p则q”假的 故是的的充分不必要条件 (3)要注意充要条件的传递性,培养思维的敏捷性 例:若M是N的充分不必要条件,N是P的充要条件,Q是P的必要不充分条件,则M是Q的什么条件? 分析:命题的充分必要性具有传递性 显然M是Q的充分不必要条件 (4)借助“电路图”理解充分条件与必要条件。设“开关闭合”为条件,“灯泡亮” 为结论,可用图1、图2来表示是的充分条件,是的必要条件。 B3 A C 图2 C A B 图4 C A B 图1 图3 B3 A (3)回答下列问题中的条件与结论之间的关系: ⑴若,则; ⑵若,则; ⑶若两三角形全等,则两三角形的面积相等. 1.2 充分条件和必要条件(2) [教学目标]: 1.进一步理解并掌握充分条件、必要条件、充要条件的概念; 2.掌握判断命题的条件的充要性的方法; [教学重点、难点]: 理解充要条件的意义,掌握命题条件的充要性判断. [教学过程]: 一、复习回顾 一般地,如果已知,那么我们就说p是q成立的充分条件,q是p的必要条件 ⑴“”是“”的 充分不必要 条件. ⑵若a、b都是实数,从①;②;③;④;⑤;⑥中选出使a、b都不为0的充分条件是 ①②⑤ . (3)指出下列各组命题中,是的什么条件,是的什么条件? (1),; (2),; (3)内错角相等,两直线平行; (4)两直线平行,内错角相等. 二、讲授新课: 1. 教学充要条件: ①一般地,如果既有,又有,就记作. 此时,我们说,是的充分必要条件,简称充要条件(sufficient and necessary condition). ②上述命题中(3)(4)命题都满足,也就是说是的充要条件,当然,也可以说是的充要条件. 2. 教学典型例题: 例1:下列命题中,哪些是的充要条件? (1)四边形的对角线相等,四边形是平行四边形; (2),函数是偶函数; (3),; (4),. 变式训练1:指出下列命题中,p是q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种作答). (1)在△ABC中,p:∠A=∠B,q:sinA=sinB; (2)对于实数x、y,p:x+y≠8,q:x≠2或y≠6; (3)非空集合A、B中,p:x∈A∪B,q:x∈B; (4)已知x、y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0. 例2. 已知p: |1-|≤2,q::x2-2x+1-m2≤0(m>0),若是的必要而不充分条件,求实数m的取值范围. 变式训练2:已知集合和集合,求a的一个取值范围,使它成为的一个必要不充分条件. 例3. “函数y=(a2+4a-5)x2-4(a-1)x+3的图象全在x轴的上方”,这个结论成立的充分必要条件是什么? 充要性的证明,关键是理清题意,特别要认清条件与结论分别是什么 例4:证明:对于x、yR,是的必要不充分条件. 分析:要证明必要不充分条件,就是要证明两个,一个是必要条件,另一个是不充分条件 必要性:对于x、yR,如果 则, 即 故是的必要条件 不充分性:对于x、yR,如果,如,,此时 故是的不充分条件 综上所述:对于x、yR,是的必要不充分条件. 归纳小结 1.处理充分、必要条件问题时,首先要分清条件与结论,然后才能进行推理和判断.不仅要深刻理解充分、必要条件的概念,而且要熟知问题中所涉及到的知识点和有关概念. 2.确定条件为不充分或不必要的条件时,常用构造反例的方法来说明. 3.等价变换是判断充分、必要条件的重要手段之一,特别是对于否定的命题,常通过它的等价命题,即逆否命题来考查条件与结论间的充分、必要关系. 4.对于充要条件的证明题,既要证明充分性,又要证明必要性,从命题角度出发,证原命题为真,逆命题也为真;求结论成立的充要条件可以从结论等价变形(换)而得到,也可以从结论推导必要条件,再说明具有充分性. 5.对一个命题而言,使结论成立的充分条件可能不止一个,必要条件也可能不止一个.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 第一章 1.2 充分 必要条件
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文