特殊平行四边形.doc
《特殊平行四边形.doc》由会员分享,可在线阅读,更多相关《特殊平行四边形.doc(9页珍藏版)》请在咨信网上搜索。
特殊平行四边形 考点1、特殊四边形的定义 (1)平行四边形+直角=矩形 (2)平行四边形+一组邻边相等=菱形 (3)平行四边形+直角+一组邻边相等=正方形 考点2、判定方法: (1)矩形判定: A、有一个角是直角的平行四边形是矩形(定义) B、对角线相等的平行四边形是矩形 (2)菱形判定: A、一组邻边相等的平行四边形是菱形(定义) B、对角线互相垂直的平行四边形是菱形 C、四边相等的四边形是菱形 D、对角线互相垂直平分的四边形是菱形 (3)正方形判定: A、对角线相等的菱形是正方形 B、有一个角为直角的菱形是正方形 C、对角线互相垂直的矩形是正方形 D、一组邻边相等的矩形是正方形 E、一组邻边相等且有一个角是直角的平行四边形是正方形。 F、对角线互相垂直且相等的平行四边形是正方形 G、对角线互相垂直,平分且相等的四边形是正方形 H、一组邻边相等,有三个角是直角的四边形是正方形 I、既是菱形又是矩形的四边形是正方形 例题1已知菱形一个内角为,且平分这个内角的一条对角线长为8cm,则 这个菱形的周长为 . 1、从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是( ) A. B. C. D. B A C D 2、如图1,在菱形ABCD中,AB = 5,∠BCD = 120°,则对 角线AC等于( ) A.20 B.15 C.10 D.5 3、如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( ) A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 D B C A N M O 4、已知菱形的边长和一条对角线的长均为,则菱形的面积为( ) A. B. C. D. 5、如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( ) A.35° B.45° C.50° D.55° A D E P C B F 例题2、如图,将矩形ABCD沿BE折叠,若∠CBA′=30°则∠BEA′=_____. 6、矩形的边长为10cm和15cm,其中一个内角的角平分线分长边为两部份,这两部份的长为( ) A.6cm和9cm B. 5cm和10cm C. 4cm和11cm D. 7cm和8cm 7、在矩形中,,,平分,过点作于,延长、交于点,下列结论中:①;②;③ CA=CH ④,正确的 ( ) A.②③ B.③④ C.①②④ D.②③④ 8、如图,矩形中,过对角线交点作交于则的长是( ) A.1.6 B.2.5 C.3 D.3.4 9、如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( ) A. C D A B E B. C. D. 10、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为( ) A.1 B. C. D.2 A′ G D B C A 11、如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A. B. C. D. A B C D 12、 矩形ABCD中,E、F、M为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为( ). A.5 B. C.6 D. 13、如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( ). A. B. C. D.不确定 14、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( ). A.2+ B.2+2 C.12 D.18 ① ② 3 4 10 15、如图,矩形ABCD中,AB=8cm,BC=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为 ______. C D E F B A 16、如图,矩形ABCD沿着直线BD折叠,使点C落在处,交AD于点E,AD = 8,AB = 4,则DE的长为______。 . 17、如图矩形纸片ABCD,AB=5cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是______cm. 18、小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为 . A B C D A B C D E F ① ② A B C D E G M N ③ 例题3、如图,点E是正方形ABCD对角线AC上一点,AFBE于点F,交BD于点G,则下述结论中不成立的是( ) A.AG=BE B.△ABG≌△BCE C.AE=DG D.∠AGD=∠DAG 19、如图,正方形ABCD的边长为2,将长为2的线段QR的两端放 A B C Q R M D 在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿 图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点 出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个 过程中,线段QR的中点M所经过的路线围成的图形的面积为 ( ). A.2 B. C. D. 20、如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中 点E处,点A落在F处,折痕为MN,则线段CN的长是( ) A.3cm B.4cm C.5cm D.6cm N M F E D C B A 21、正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为( ). A.10 B.12 C.14 D.16 A B C D F E H G 22、如图,边长为6的正方形ABCD绕点B按顺时针方向旋转30°后得到正方形EBGF,EF交CD于点H,则FH的长为______(结果保留根号)。 23、如图,已知正方形的边长为3,为边上一点, .以点为中心,把△顺时针旋转,得△,连接,则的长等于______。 . E A D B C 24、如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) A.669 B.670 C.671 D. 672 例题4、如图,在菱形ABCD中,∠A=60°,=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1) 求∠ABD 的度数; (2)求线段的长. 25、如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE. (1)求证:△ABE≌△ACE (2)当AE与AD满足什么数量关系时,四边形ABEC是 菱形?并说明理由. 例题5、已知矩形中,对角线、相交于点,、是对角线上的两点,且. (1)按边分类,是 _______三角形; (2)猜想线段、的大小关系,并证明你的猜想. 26、矩形ABCD中,AB = 6,BC = 12,点E从点A出发沿AB方向向点B匀速移动,速度为1,点F从点B出发沿BC方向向点C匀速移动,速度为2,如果E、F同时从点A、B出发,连接EF,设运动的时间为秒,回答下列问题: (1)当为何值时,为等腰直角三角形? (2)是否存在某一时刻,使为等腰直角三角形? 27、 如图所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF. 例题6、已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF. (1)求证:BE = DF; (2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论. 28、△ABC中,,垂足为点, 是△ABC外角的平分线,,垂足为点E; (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个 正方形?并给出证明。 29、如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接 (1)求证:四边形是菱形; (2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么? A D F C E G B 30、(2009年佳木斯)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E. (1)试找出一个与△AED全等的三角形,并加以证明. (2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由. 9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特殊 平行四边形
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文